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Abstract

For most of history, musical transcription, the act of creating sheet music from a recording or a live
performance of a piece of music, has solely been the domain of trained musicians, however this is slowly
becoming not the case. As digital technology has improved gradually over time, it has become possible
to tackle the problem of transcription using computers rather than the ear of an experienced musician.
This project investigates a computational approach to generating monophonic musical performances
automatically.
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1 Introduction

Musical transcription is the process of creating a piece of sheet music which captures the notes played in
an already existing performance or recording of a piece of music, similar to how linguistic transcription
consists of writing down words corresponding to what a person says out loud. The act of transcribing
has for centuries and until quite recently been an activity performed exclusively by human beings,
however over the last several decades, advances in computer science have meant that computers can
now be used to assist with and sometimes be chiefly responsible for generating transcriptions from
musical recordings.

The problem of transcription is a very interesting one, as it is a problem which is not entirely
objective (like the answer to the question: What is the loudest moment in this recording of a musical
piece?) but also not entirely subjective (like the answer to the question: is this performance of a piece
of music good?). Furthermore, humans who are good at performing transcriptions do not gain their
skill by memorising a set of techniques and methods to translate what they hear onto the page but
instead build an intuition over years of practice, meaning if one were to ask a skilled transcriber “how”
they know what to write, it would be extremely difficult for them to explain their process in precise
terms (like asking someone “how” they know what words correspond to the sounds someone is making
when they speak). As a result, new techniques must be developed to be used by computers which bear
little resemblance to the methods used by humans to accomplish the same feat.

This project focused on the task of transcribing excerpts of monophonic western tonal music using
traditional western music notation, from recordings provided as audio recordings. We investigate how
the problem can be broken down into a variety of smaller sub-problems which can then be solved
individually and the results of which can be cumulatively combined to form a sensible transcription
for a given excerpt. To accomplish this, we draw on and borrow techniques from a variety of domains,
including but not limited to, signal processing, statistics, and function optimisation.



2 Context Survey

This section discusses, introduces, and contextualises key concepts relating to automated music tran-
scription and computer aided music information retrieval (MIR) with respect to the goals of this
project. Included in this section is an overview of currently existing music information retrieval tools,
the state of contemporary and historical research in the field, and further discussion of other impor-
tant concepts relevant to this project, such as an introduction to some of the standard algorithms and
techniques which were utilised over the course of the project.

2.1 Overview of Music Information Retrieval (MIR) literature

The field of computational MIR is relatively small in the grander scope of computer science disciplines
but is the subject of an increasingly broad corpus of literature. There are a variety of widely studied
problems in the field of MIR, some of which have been studied at great length and for which there exist
robust solutions and standard algorithms for tackling them, while others are still quite challenging
for computers to perform with a practical rate of success. Examples of problems falling into the
former would be that of monophonic pitch detection, for which there is a vast corpus of literature
dating back to 1970s [RCRMT6], and for which there are a plethora of widely implemented solutions
which can be found in many (at least for a musician) everyday places, such as guitar tuner effects
pedals [LS09], mobile phone apps, and digital audio workstation (DAW) plugins [You22]. Another
widely studied problem is the problem of content-based searching, which allows the app to determine
from a short, possibly distorted (by background noise, poor recording quality, etc.), the song being
played|CVG™08][Foo97], and provides the framework used by apps like Shazam. As indicated by the
success of the Shazam app, it is a generally reliable and robust system. Other problems in the field of
MIR are significantly more challenging, and consistently reliable solutions for them do not exist yet.
D Byrd and T Crawford have highlighted a number of challenging MIR problems, such as the analysis
of polyphonic excerpts [BC02|, which currently still remains a difficult task, although modern deep
learning and neural network based approaches to the problem indicate good progress is being made
towards reliable system for polyphonic analysis [TA22] [Elo20].

Due to the challenges present in MIR technology, for certain applications and systems, human
beings still outperform computers at analysing and annotating music with the relevant information,
even when dealing with large volumes of music. For example the Pandora music streaming service,
which places a focus on recommending users songs based on their listening habits uses a database of
annotated songs called the Music Genome Project, however the annotating of these songs is performed
by human beings, not automatically by a computer [Wal09).

The problem of automated monophonic transcription does not fall into the former, easier category
of problems, although there exist standard approaches to some of the constituent sub-problems which
automatic transcription can be broken down into (e.g. monophonic pitch detection), the task as a
whole represents a relatively challenging one, since for a given musical excerpt, there is a great deal of
information which must be derived to build a full transcription (pitch and onset of each note played,
time signature, key signature, etc.). Although there are a significant number of papers which discuss
automatic monophonic transcription [BMS00] [GBS12] [MS00], it is difficult to find papers which go
as far to fully generate typeset sheet music, instead, these papers generally focus just on extracting the
pitch information and the relevant note onset and offset times. Only a small number of papers tackle
the more challenging problem of taking a full audio-to-score approach to the problem could be found
[IRPCZ18] [Ryy04], these papers take a more abstract approach to the problem using deep/machine
learning techniques to train neural networks to tackle the problem. This can be contrasted to the
approach taken within this project, which involved breaking the problem down into easier to manage
sub-tasks which were simple enough that they could be modelled using standard computer science
techniques.

2.2 Review of currently existing software

The task this project was concerned with - the task of generating a piece of sheet music corresponding
to a recorded excerpt of a musical piece, can be seen as a specific version of the more general problem
of how can one extract from an audio recording enough information for a human performer to then
attempt to play the relevant extract themselves. The average recording of a musical performance



contains a vast amount of information and can be analysed in many different ways, and a user’s re-
quirements and goals will affect what specific characteristic information relating to a musical recording
they are seeking to retrieve and include in their recreated representation of the music. For example, a
hobbyist guitarist may simply wish to know what chords are used in a song and approximately when
the chords change, since knowing this is enough information for an amateur musician to play along to
a recording, Whilst a researcher analysing west African percussion music may be keenly interested in
accurate rhythmic transcription but not be too concerned with the melodic or harmonic content of the
music they are analysing. As a result of this, there exists many different software tools available which
could be considered to some degree as automatic transcription tools. In this section we discuss a se-
lection of relevant available software which in some way or another can be seen as answering this more
general problem of extracting enough information for a performer to attempt recreating the recording,
and discuss how they are both similar and different from the artefact developed over the course of this
project.

Digital Audio Workstations

Digital Audio Workstations (DAWSs) are where many professional and hobbyist musicians alike now
find themselves spending most of their creative time. Such software suites offer a large variety of tools
to aid in the recording, creation and manipulation of audio. Many DAWSs contain features for MIR, for
example, Ableton Live will attempt to extract from an audio file the onset and pitches of notes played
and output to the user a MIDI representation of this information [AbI22]. This is an implementation
of the weaker version of transcription discussed in the previous section. Ableton also includes “Groove
Detection” features which can be used to extract rhythmic information from recordings so as to more
naturally quantize and warp them [AbI22]. This involves detecting things like the beats-per-minute of
a piece of music and how “swung” the beats are. Most DAWSs are not designed with sheet music as a
central aspect of the system, so as a result, the MIR features found in DAWs do not align incredibly
closely with the features we require. Unfortunately, most DAWs are proprietary software and there is
little information available as to how these features are implemented.

seven_nation_army

Figure 1: Ableton Live has functionality to extract MIDI information (below track) from audio clips
(above track).

Other common DAWs such as Logic Pro, Cubase, and Protools contain similar functionality. None
of these DAWS provide a full audio-to-score system.

Websites and mobile apps

There are many websites and mobile phone applications available which offer more niche and specific
tools for performing MIR. As already mentioned, there are a plethora of guitar tuner apps and websites
available [DaT22], which effectively perform real-time monophonic pitch detection. It is
possible to find a selection of apps and websites offering functionality to accomplish a variety of other
basic MIR tasks - for example detecting the BPM of a piece of music [Get22], or detecting the key of
a piece of music [Tun22]. As was the case when looking at DAWSs, these tools almost universally focus
on a small MIR problem, which makes sense as websites or apps are generally designed for smaller,
quick-to-perform tasks, this is in contrast to the goals of this project which seeks to provide a full
audio-to-score system, the functionality required to accomplish some of the sub-tasks which must be
solved as part of the creation of this system however is similar to the functionality provided by some
of these apps and websites.



Automatic sheet music transcription

Finally we discuss currently existing software which attempts to perform a task similar to what we
attempt to do in this paper - full audio-to-sheet transcription. Software such as MelodyScanner
and AnthemScore attempt to generate sheet music based on live audio recordings, with the latter
positioning itself as a composition assistant whereby the user can tinker and play with parameters in
real time and can manually add and remove notes, change the piece’s time signature or key signature,
etc. It is difficult to provide an in depth discussion or evaluation of the functionality offered by
these services since all examples of such software found placed their functionality behind a paywall
or freemium business model. From the limited information which can otherwise be gleaned, it seems
these pieces of software attempt to offer a system similar to that developed in this project, although
they place a greater emphasis on user interfaces and human computer interaction, something which is
not discussed in this project due to the limited scope available in a minor project. It is also difficult
to compare these products to the system developed in this project due to the fact that all of these
pieces of software are proprietary and not open source. Little information is made available on their
websites concerning the inner workings of the system, and one is inclined to believe the vague allusions
to “AI”s and “deep learning” made throughout their sites are more likely simply jargon in the name
of marketing more than anything else.

2.3 libraries, formats, and resources

This section discusses a variety of standard MIR libraries and resources which were used or drawn on
throughout this project, including file formats, standard Python libraries, and open source standard
algorithm implementations. There exists a wide range of open source resources available for performing
MIR. Use was made of a variety of these resources throughout the project. Compiled here is a list of
these resources, including a discussion of the relevant functionality they provide.

e MIDI: No discussion of music related computing would be complete without some mention of
the ubiquitous Musical Instrument Digital Interface (MIDI). Since the 80s MIDI has represented
the de facto standard machine readable symbolic representation of music. Although MIDI was
not as big a part of this project as originally anticipated, MIDI data was made use of when
evaluating the artefact towards the end of the project. The standard MIDI pitch numbers were
used throughout the project as a machine readable method of handling the pitches of notes

e mido: mido is a Python library which facilitates the straightforward reading and manipulating
of MIDI information. mido proved to be a useful tool in extracting information from MIDI files
used for evaluating the artefact, towards the end of the project.

e MusicXML: As the name suggests, MusicXML is an XML-based file format for storing western
music notation. It a format supported by several of the other tools discussed in this section
(Musescore, music21 - see below). While the functionality it provides is overkill for tasks involved
in this project, it provides a good final format for musical transcriptions to be exported as, since
transcriptions exported in this way can then be opened in a variety of music typesetting programs.

e Lilypond: Lilypond is an open source computer program for typesetting sheet music. It is a long
running and well maintained project. Lilypond provides an easy to use system which produces
high quality typesetting. As a result of being open source, many other resources available can
interface with Lilypond (e.g. music21 - see below) to provide high quality musical engravings
with minimal low level input from the user

e MuseScore: MuseScore is a freely available and open source music engraving suite which provides
support for MusicXML files. Similar to Lilypond, MuseScore provides a straightforward way of
generating high quality sheet music with minimal effort. Additionally, MuseScore allows playback
and editing of the typeset music. This provides some additional superfluous features to the
system which are nonetheless interesting to have, for example a user can listen to the playback
of a transcription or manually make changes to sections incorrectly transcribed by the system.

e music21: music21 is a Python library and self-proclaimed “toolkit for computer-aided musicol-
ogy” and provides a great many resources for manipulating symbolic representations of music in



a standardised way, the scope of this project was such that only a small subset of music21’s fea-
tures were relevant to the task at hand, including music21’s robust functionality for converting
from symbolic, machine readable representations of musical information to more human readable
formats with minimal time required to be spent typesetting. By building on the functionality
of 1lilypond and supporting the ability to export information in MusicXML, music21 provides
means of producing machine readable music with little oversight from the user or developer.

e aubio: aubio is a long running, well featured open source library providing features and function-
ality for analysing and labelling audio signals, originally implemented in C, Python bindings are
also available. It includes implementations of a variety of standard signal processing algorithms
commonly used in MIR (including ones for pitch and onset detection for example).

It should be noted also that a variety of libraries not directly related to MIR were also used
throughout the project, such as numpy, scipy, etc. More information on the use of these libraries can
be found within the appropriate context later in this report.

2.4 Standard approaches and algorithms

In this section we discuss some well known approaches to standard problems which were encountered
in the course of this project.

Maximum a-posteriori estimation

Maximum a-posteriori (MAP) estimation is a standard technique for estimating an unknown quantity
within a statistical context. Certain problems in MIR can be modelled as statistical problems which this
technique can be applied to. For example, the problem of quantizing note onsets from the continuous
space of possible onset times to the discrete, quantized grid of a score can be viewed through a statistical
lens. This is the approach taken to quantization by Cemgil et al. [CDKO00], and we will use it as an
example to outline how MAP estimations work. Firstly consider for a given quantized rhythm, that
since humans cannot play perfectly in time, a human performer will vary from the quantized rhythm
when they attempt to perform it by a certain amount. They are only likely to vary from the quantized
rhythm so much, and in fact, we can consider the variance of their performance as being distributed
randomly. For some performance A, we can allocate a likelihood that it was an attempt at performing
the quantized rhythm B, this is P(A|B). If we have some observed performance A and wish to find a
good quantization B, we might choose our quantization to be B such that:

By, = argmax P(A|B)
B

This is refered to as the mazimum likelihood (ML) estimate, and can be imporoved if we consider
what we know about the distribution of B itself, the so called prior, P(B). In the context of quan-
tization and sheet music, certain rhythmic phrases and durations are far more common than others,
therefore it is possible that prior to knowing what the unquantized onsets are for a given performance,
we can get some kind of estimate of how likely it is a score would contain a given rhythm. To get a
new, hopefully stronger estimate, we can combine P(B) and P(A|B).

Burap = argmax P(A|B)P(B)
B

Note that Bayes’ theorem states that:

P(A|B)P(B)

P(BI4) = =55

and since we are concerned with a specific unquantized rhythmic passage A, P(A) is constant, so:

P(A|B)P(B)
P(A)
So when we try to maximise the quantity P(A|B)P(B), we are in fact also maximising P(B|A),
the posterior probability. Hence the name mazimum a posteriori estimation. Later in the report we
discuss in more detail how MAP estimation was used to implement quantization within the system.

x P(A|B)P(B)



Figure 2: Above is a very unusual rhythm which even without knowing the unquantized onsets, we
can say probably wouldn’t be a sensible choice for quantizing any set of onsets to - this rhythm would
have a low prior P(B). Below is a more common rhythmic figure, this would have a higher P(B).

Omnset detection

A common signal process problem in MIR is that of detecting when the beginning, or onset, of a note
is. Onset detection is a widely studied problem [Dix06][BDA™T05|[KIa99], and there are a variety of
reliable algorithms which exist for detecting onsets. In this section we outline how the spectral fluz
onset detection method works. It is a variant of the spectral flur method which is made use of later in
the project for performing onset detection.

An onset detection function is a function whose peaks are intended to coincide with onsets of notes
from an audio recording. A key idea utilised across many onset detection functions is that of the time-
frequency representation of a signal. A Fourier transform can be used to determine the frequencies
present in a signal but only over a given window of time, the larger the window of time, the more
frequency information can be determined, but a sacrifice must be made in terms of the temporal
resolution of the signal. Thus the time-frequency representation of a signal breaks the signal into
discrete windows, the frequency distribution of each of which can then be analysed, and provides a
balance between spectral and temporal resolution. A typical window size is 2048 samples [S06].

Spectral flux works by observing how the magnitude of different frequencies produced by Fourier
analysis changes over time. If we consider the cumulative positive changes across all frequencies
analysed by the Fourier transform, we have a function which will increase when the frequency content
of the signal changes. This often indicates a note onset since new notes will often have different
spectral content from previous notes, and also the onset of a note on most musical instruments has a
significantly different spectral profile than the sustained part of the note (e.g. the pluck of a guitar
string or bright “ping” of striking a glockenspiel).

pitch detection

Another MIR task overlapping with the field of signal processing, the extraction of musical pitch has
a broad body of literature associated with it [RCRM76][DCKO02][DLCMS01], and there are a plethora
of standard algorithms and approaches to the problem. One of the most common and widely used
fundamental frequency algorithms is the YIN algorithm, which uses a relatively involved process for
determining fundamental frequencies. The first step of the process involves determining an amount
we can shift the signal by such that it resembles itself closely again. This makes sense since if we are
attempting to find the fundamental frequency of a signal, the signal will exhibit periodicity, further
steps involve applying a variety of further signal processing techniques so as to deduce a relatively
simple objective function which can then be optimised without simple standard techniques to give a
final fundamental frequency estimate. This report made use of the YIN algorithm for performing pitch
detection.



Figure 3: The waveform of an audio file (blue) with estimated onsets shown in red and estimated
relative pitch shown in green (here and throughout, visualisations created using matplotlib show the
maximum amplitude within consecutive blocks of 4096 samples), pitch estimate plotted with respect
to MIDI note number and are shown vertically in line with the part of the waveform the estimate
corresponds to. Excerpt is first two bars of Happy Birthday, played on Trumpet.

Salience

Salience refers to the perceived prominence of a note in a piece of music. A note with high salience is
one that jumps out at the listener, that the listener percieves as more “important” than a note with
low salience, which will draw less attention. Salience is determined by many factors (loudness, pitch,
timbre, harmonic relation to key, etc.). Although there is a variety of literature published on the topic
of musical salience, there is little consensus in it about a standard metric for measuring it, with a
variety of models being proposed. Based on the available literature, two of the most widely considered
measures of salience are found in [Dix01], and these were the measures considered later within this
project. The first salience measure, which we will refer to as the nonlinear salience measure is given
as:

Snonlin(dap7 ’U) = d : (C - p[pmin;pmax]) : log(v)

where ¢ = 84 is a constant, d is the note’s duration in ms, p is the MIDI note number associated
with the note’s pitch, and v is the velocity of the note. In the paper, v is defined as the MIDI velocity,
but since we do not know that quantity, we take v to be the peak amplitude of the note normalised so
that the note in the recording with largest peak amplitude has v = 127, the maximum MIDI velocity
possible (i.e. a note with a peak amplitude half that of the maximum amplitude in the recording would
have velocity V' = 63.5). Finally, p[pmin, Pmax] is defined as:

Pmin p S Pmin
p[pminypmax] =\3\P Pmin < P < Pmax
Pmax Pmax < P

The second salience measure used (the linear salience) is given as:

Slinear(dapa U) =c1-d+c 'p[pmimpmax]) +v

Where the symbols have the same meaning as in the definition of nonlinear salience, and the
constants ¢y, co are given as ¢y = 300, co = —4.
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3 Requirements Specification

Below is the original set of goals listed in the project’s DOER deliverable.

e Conversion from audio to MIDI data: Investigate algorithms and techniques
capable of monophonic pitch, rhythm, and note duration detection from audio
clips of a specific monophonic instrument playing a melody, and attempt an im-
plementation of such an algorithm.

o Investigate algorithms and techniques capable of reasonably estimating the
tempo and time signature of a set of monophonic MIDI data, and attempt to
implement such an algorithm

o Investigate algorithms and techniques capable of reasonably estimating the key
signature of a set of monophonic MIDI data, and attempt an implementation of
such an algorithm

e Implement a means of systematically typesetting and rendering monophonic
MIDI data as sheet music, incorporating the deduced tempo, time signature, key
signature (from Objectives 2 and 3), and the MIDI pitch, rhythm and note dura-
tion data (from Objective 1).

o Investigate extending monophonic pitch and note detection to a larger pool of
Secondary | different instrument timbres

o Investigate extending monophonic pitch and note detection to simple polyphonic
recordings.

e Investigate and implement means of detecting and analysing dynamical in-
formation (relative loudness/quietness) about notes in an audio clip, and include
this information as dynamic queues (cruciendo, forte, etc.) in the rendered sheet
music for the audio clip.

Primary

Once work was began on the project, after a relatively small amount of research had been done and time
had been spent studying the topic, it was realised that the original goals developed did not necessarily
align with what it would make sense for the project to involve. For example it quickly became apparent
that it would be superfluous and add unnecessary overhead to use MIDI as an intermediate format
for data. It was also realised that certain original goals grouped too many tasks under one heading.
For example the second task groups tempo detection and time signature detection together, both of
which it was soon realised were unique and challenging problems in their own right. As a result of
these developments, after discussion with the project’s supervisor, the goals of the project were slightly
reevaluated to better align with what the project would come to be. Below are those reevaluated goals.

11



Primary

e Investigate and integrate algorithms and techniques capable of monophonic
pitch, and onset detection from audio clips of a monophonic instrument playing a
melody.

o Investigate and integrate algorithms and techniques capable of reasonably
estimating the tempo of extracted discrete notes, including controlling for the
natural tempo drifts present in human performances.

o Investigate algorithms and techniques capable of reasonably estimating the key
signature of a set of discrete notes

o Investigate algorithms and techniques capable of reasonably estimating the
time signature of a set of discrete notes

e Investigate and integrate means of systematically typesetting and rendering a
computer representation of a collection of discrete notes as sheet music, incorpo-
rating the deduced tempo, time signature, key signature, and the pitch, rhythm
and note duration data.

Secondary

o Investigate extending monophonic pitch and note detection to a larger pool of
different instrument timbres

o Investigate extending monophonic pitch and note detection to simple polyphonic
recordings.

e Investigate and implement means of detecting and analysing dynamical in-
formation (relative loudness/quietness) about notes in an audio clip, and include
this information as dynamic queues (cruciendo, forte, etc.) in the rendered sheet
music for the audio clip.

The project’s secondary goals remained unchanged.

12




4 Design and implementation

This section discusses the approach which was taken in order to design and implement a system
which could fulfil the requirements outlined in the previous section. The main task of generating
a transcription from an input audio file was broken down into several smaller sub-tasks whereby the
output of one sub-task becomes the input of another. A discussion of each of these sub-tasks is included
along with discussion of how the larger problem was broken down and how each of the sub-tasks fit
together to specify a solution to the original task. Details regarding the implementation for each
sub-task are also included and discussed.

4.1 Breaking down the problem

Like when solving most complex problems, it was found to be advantageous to break the large problem
of automatic monophonic transcription down into smaller, more manageable pieces. The following sub-
tasks were determined as necessary steps required to reasonably construct a piece of sheet music from
a given audio recording.

1. From the input audio file, the pitch and onset transient information should be extracted.

2. The transient and pitch information should be analysed to produce a discrete list of notes with
well defined onsets and pitches.

3. From the derived list of notes, an estimation (or several candidates) of the tempo of the piece of
music should be deduced.

4. Using the estimated tempo, the absolute timestamps of the piece’s rhythmic pulse should be
deduced. This process should take into account natural deviations in the tempo over time since
such derivations are a natural part of music performed by human beings.

5. From the downbeat timestamps and the information already known about note onsets, the most
appropriate duration to denote the notes in sheet music should be determined.

6. From the information known about the pitches present in the piece of music given, the key
signature of the excerpt should be estimated

7. From the information known about the notes, the time signature of the piece of music should be
estimated.

8. Using all the information derived from previous steps, the music should be typeset and exported
in an appropriate format such as an image or in MusicXML.

Below is a figure illustrating how these separate tasks combine to form a full solution to the initial
task.

13
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It should be noted that almost all of these tasks could in their own right form the basis for a project
in and of themselves, and so the final artefact developed over the course of this project does not purport
to be a program encapsulating the most advanced and cutting-edge technology and research currently
available with regard to each sub-task, but instead necessarily strikes a balance between quality and
complexity necessitated by time constraints and the author’s prior knowledge of relevant topics.

4.2 Restricting the problem

An important step in the design stage of this project was considering exactly what sort of recordings
would be considered for transcribing. Already we have discussed that the primary focus of the project is
on monophonic recordings of western music, recordings only containing a single melody line. Additional
restrictions to the input set of the system allow us to develop a more robust and refined system without
having to consider outlier cases. The restrictions were chosen so as to remove what would be considered
as highly unusual or extreme musical performances. Firstly, the range of tempi considered was limited
to the range 60-200bpm, this range contains the vast majority of western music, and pieces composed
with tempi higher than 200bpm or lower than 60bpm can generally be notated at a tempi in this range
(e.g. a 45bpm piece can be notated at 90bpm without much lost in terms of information, all note
durations would just be doubled from the original notation).

A further restriction considered was that of time signatures. Technically, there is an unlimited
number of possible time signatures, however in western music, the the majority of pieces are in either
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4, 3, or §. Other time signatures can be seen as falling into two further categories, the first is time
signatures which very closely resemble the three already given, for example a 7 march will still be
easily readable to a musician, even if it is typeset in §, similarly a piece in ' can be notated in §
without much issue. Finally there are odd meters which are not directly related to any other time
signature. Examples include 3, , &, etc. Such time signatures are exceedingly rare and so are not
considered in this project, since realistically any implementation which tried to consider them would
generate more false positives than it would ever come accross actual examples of music notated in
these signatures. The final restriction we will discuss here relates to the pitch content of the recordings
analysed. Pitches were restricted to pitches in the range of A0 to E7. Again, it is possible to record and
perform music using pitches outside this range, however as with the case with unusual time signatures,
it is overwhelmingly more likely that considering a wider range would detect false positives significantly
more often than true positives.

There were other, more subtle assumptions made about the music being analysed which are dis-
cussed later in this report - in the relevant context.

4.3 General implementation approach

Below we discuss each sub-task and the design approach taken towards implementing them.

4.4 Pitch and onset detection

The process taken to extract the pitch and note onset information was relatively straightforward and
not the main focus of work undertaken in this project. Since, as discussed in the context review at the
start of this project, both these problems are extremely well studied [GT03] [BKS12], and open-source
implementations of the standard methods for solving them are available online, the decision was made
to make use of these implementations rather than spending time implementing the same algorithms
from scratch. Small tweaks were made to the algorithms used in determining the pitch and onset
points of notes in order to tune the algorithms more finely to the specific problem at hand rather than
the broadest general use case.

Given an input file, using these standard algorithms it was possible to generate a list of discrete
note onset points and a continuous pitch estimation function which mapped a given point in time to
a MIDI pitch and confidence level in that pitch estimation.

For pitch detection, the python library aubio was used. The library provides a Python binding
for the C Aubio library, which provides a variety of functionality for manipulating and analysing
musical signals. From aubio, the YIN fundamental frequency estimation algorithm was used. Taking
a hop size of 512 samples allowed for a continuous pitch estimation with good resolution: A file
samplerate of 48000Hz meant there were 48000 + 512 = 93.75 pitch and confidence estimates per
second. This resolution is more than adequate for analysing music performed by humans since this
rate is significantly higher than any practical bound on the frequency at which human beings can play
discrete notes. A confidence cutoff of 0.8 (where the confidence was a number in the range [0,1]) was
found to provide a good balance between culling incorrect pitch estimates and leaving enough correct
estimates to perform analysis on.

For onset detection, the script implemented by [BKS12], which provided python implementations
for a variety of transient onset detection algorithms. The algorithm chosen was the spectral fluz log
filtered algorithm, a modified version of the spectral flux algorithm discussed earlier, which was found
by [BKS12] to provide the overall best onset detection. Bock et al. modify the ordinary spectral flux
onset detection method by applying a set of filters to the input signal (a filter bank). The filters are
selected to filter out frequencies so as to leave the frequencies corresponding to the notes of western
tonality more pronounced. This decreases the chance of false positives due to non-musical noise, and
increases the likelihood of more subtle true positives being picked up in the system.

4.5 Determining discrete notes

This sub-task is concerned with determining when given notes start and end based on a continuous
estimation of pitch, estimation confidence, and discrete note onset points. Two approaches were
implemented, both with slightly different use cases.
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Figure 6: Pitch estimates attaining confidence threshold (red) can indicate the onsets of notes played
on an instrument without obvious transients (note the consistent amplitude of the waveform). A visual
representation of the waveform of the audio clip is shown in. Excerpt from Bach: Cello Suite No 1 -
Prelude.

Figure 7: Symbolic representation of notes derived from Bach excerpt.

The first method implemented made use only of the pitch estimation data and was found to be
more appropriate for instruments which lacked distinctive transients at the start of notes played (e.g.
bowed string instruments like cellos and violins). The first method scanned through the input audio
file from start to finish and used certain features of the pitch estimation function to determine when a
note started and stopped. Firstly, any estimations of pitch outside of the restricted range mentioned
earlier were not considered. As the program scanned through the time domain, a new note would begin
(and the prior note end) when the pitch estimation changed and the estimation confidence attained a
confidence threshold (see figure 6).

The information deduced for each note was used to instantiate a Note object which encapsulated
the information needed to perform further relevant analysis. It was decided it would be beneficial to
implement a custom class to represent notes within the system rather than using the already existing
MIDI format for a couple of reasons. Firstly MIDI is very much designed as a system for encoding
a continuous sequence of musical events, rather than discrete musical objects - there is no such thing
as a MIDI note object, just Note On and Note Off signals defined relative to previous signals in
the sequence. Secondly, implementing a customised class allowed functionality to be tailored to the
task at hand. For example, different salience measures were defined as class methods, which made
implementing latter parts of the system more straight forward and neater.

The second method used was more effective for transcribing notes played by instruments with well
defined transients (e.g. piano, guitar). In this scenario, the onset transients already detected would
likely represent quite a faithful representation of the actual note onsets present in the recording. Each
pair of transients would then represent a note, the pitch of which would be determined by whichever
pitch was most frequently estimated and which attained the confidence threshold within the two
transients.

Figure 8: Transients (vertical lines in black) help more clearly delineate notes played on instruments
with clear transients. Excerpt is first two bars of Happy Birthday, played on Trumpet.
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Figure 9: Symbolic representation of notes derived from Happy Birthday excerpt. The transients help
us to deliniate between the first two notes of the same pitch and help us to register the start of the
first note closer to when it was actually played.

It should be noted that for the most part, the end of one note was simply taken to be the start
of the next, further metrics for determining when a note ends were not considered in great detail in
this project, except for the final note in a recording where there would be no following note to mark
its end. In this scenario, the end of the note was simply taken to be the last point in time where the
pitch detection function estimated a pitch matching the final note’s pitch with confidence attaining
the confidence threshold.

Below can be found pseudocode outlining the two note detection methods which were implemented.

Algorithm 1 Non-transient note detection method

1: procedure GETNOTESNONTRANSIENT (confidence, pitches, times, threshold)
2 1=0

3 notes = [ |

4 while i <len(confidences) do:

5: if not currently recording note and confidences[i] >threshold then
6 create note N

7 N .start = times]i]

8 N .pitch = pitchesli]

9: while confidence[i] >threshold and pitches[i] = N.pitch do
10: i=i+1
11: end while
12: N.end = times]i]
13: note.add (V)
14: end if
15: end while

16: end procedure

Algorithm 2 Transient based note detection method

1: procedure GETNOTESNONTRANSIENT (onsets, confidence, pitches, times, threshold)
2 for O; in onsets do

3 create note IV

4: find j such that times[j] = O;

5: find k such that timeslk] = O;41

6 N .start = times][j]

7 N.end = times[k]

8: N .pitch = mode of pitches[j to k]

9: end for

10: end procedure

4.6 Tempo estimation

In order to translate the absolute onset information known about notes in the recording to actual sheet
music, it is extremely important to determine the tempo of the overall piece in question. For example,
we may know that a note lasts 700ms and starts 3500ms after the beginning of the recording, however
if we don’t know the frequency of the pulse of the excerpt, it is impossible to notate the note using
standard sheet music, which does not deal with absolute durations, but instead durations relative to
the pulse frequency of the piece (i.e. the tempo).
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Two methods were explored for finding the tempo of the excerpt. The first method will be referred
to as the “naive” method, as it stood out as a relatively obvious but not incredibly robust or efficient
way of determining the tempo of a piece of music. The second method investigated was proposed by
Dixon [Dix01] and provides an interesting alternative approach to tempo estimation.

Naive method

Firstly we will discuss the naive method. In essence, the method consists of transforming the problem
into an optimisation problem by defining a way of scoring different tempo candidates such that we can
apply standard techniques of optimisation to find an satisfactory tempo. In this scenario, a tempo has
two characteristics, the beat duration, i.e. the length of time between successive pulses in the piece of
music, and an offset, to handle the scenario where the first note in the excerpt is not on a down beat
(an anacrusis). While the range of the beat interval is continuous, the offset is quantised with respect
to the beat duration. This is because in western notation, there are only certain note durations with
respect to the beat duration which can be easily notated, so only these subdivisions of the beat must
be considered as offsets. Tempo candidates are scored based on how closely they line up with the start
of notes in the excerpt.

To define an optimisation problem, we must define an objective function to optimise. The objective
function chosen for this optimization took as dependent variables the tempo candidate (i.e. the distance
between pulses, and a starting offset), and calculated a score for each note based on the distance
between the note and the nearest pulse predicted by the tempo candidate. The sum of these scores
was taken as the score of the candidate tempo, with a smaller score indicating a better candidate. The
objective function can thus be given as:

# of notes
F(Ae)= > minE(O;,nA+e)
n
i=0
Where A is the distance between pulses, ¢ is the offset, O; is the onset of the ith note, and F is the

score given for each note, defined as:
0; — A|
E(0O;,A) = 10i = A1
(0 8) =[5

Where D; is the duration of note i. This expression punishes longer notes which are out of time
less than shorter ones, and is non-linear such that the larger the difference between the actual onset
and the tempo pulse the greater the punishment. To find the minimum value of the objective function,
the scipy.optimize.differential evolution optimisation function was used. This optimisation
algorithm was chosen since it uses stochastic methods rather than gradients, which can prove to be
more effective when dealing with more unusual objective functions such as the one defined in this
problem, which we have no reason to believe will necessarily be smooth and well behaved.

Differential evolution does not make use of the objective function’s gradient, instead, the method
works by generating a random population of candidate “agents” spread over the search space, in this
scenario, this would involve generating a set of candidate tempi with beat intervals in the range [300ms,
1000ms]. Agents are then moved around using a semi-random method. By picking a specific agent X
and a set of other discrete agents, we can define a new agent Y in terms of X and the other agents we
chose. If the score of Y is better than the score of X, the agent X is replaced by the new agent Y.
This process is repeated until some termination condition is met (e.g. maximum number of iterations,
a bound is achieved, etc.). Since agents will only be replaced by agents with better scores than them,
over time, the average score of the population should decrease and tend towards a global minimum of
the objective function. The objective function F' defined above takes two parameters, however since
as already discussed, the offset parameter ¢ is quantized to a small list of possible values, instead
of applying two-dimensional differential evolution over both parameters, one-dimensional differential
evolution was performed to determine the optimum beat interval for each offset, and the minimum
across all offsets was chosen by brute force. i.e.

argmin F(A, e) = argmin(min(min pgF'(A, €)))
(Ae) (Ae) ¢ A
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Figure 10: The pulse (shown in red) of a good tempo estimate (above) will coincide closely with the
start of the notes detected prev1ously, while a bad (below) tempo estimation will rarely line up closely
with the start of notes.
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Figure 11: The value of the objective function F' can oscillate wildly with respect to A, making it
difficult to determine global minima using optimisation methods which utilise the function’s gradient.
The figure shows a plot of F'(A,0) with respect to A for the detected onsets of Happy Birthday.

Dixon method

The method outlined by Dixon does not transform the problem into an optimisation problem as
such. Dixon’s algorithm outlines a more deliberate and measured approach. Effectively, the algorithm
determines a selection of reasonable tempo estimates by considering the gaps between the starts of
notes, so-called “inter-onset intervals” (IOIs), by considering how often relatively similar IOIs occur
and how different IOIs subdivide each other, we can deduce information about the overall metrical
structure of the excerpt in question. More explicitly, IOIs of the same size (within a given tolerance,
taken to be 50ms) are grouped into “clusters”. Once each IOI has been placed in a cluster, clusters
with similar average 101 size (again similar is taken to mean within 50ms) are merged together. After
all the clusters have been created, clusters are scored based on how well smaller clusters “subdivide”
into them. Clusters are scored via the following system.
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Algorithm 3 Cluster score

1: procedure SCORE(C)

2 for each C; do

3 if |n - C;.interval- Cl.interval| < 50ms then
4: C.score = C.score + f(n) - C;.size

5 end if

6 end for

7: end procedure

Where f is given by:
6—-n 1<n<4
fn) =41 5<n<8

0 otherwise

The best candidates are then chosen as the clusters with the highest scores.
Chest = argmax SCORE(C)
c

The implementation outlined in the paper given was modified so as to restrict the range of possible
candidate tempos, since it was found that large multiples of the correct tempo would be dispropor-
tionately favoured, so much so that the highest ranked candidate tempos would often be tempos closer
to the length of a whole bar rather than the single note tempo. Tempos were restricted to the range
60-200bpm. It was considered to not be an acceptable consequence of this that pieces with tempos
outside of this range then tended to have their tempo estimated as a simple integer multiple of their
actual tempo (e.g. a piece at 45bpm might be estimated at 90bpm, and a piece at 280 might be
estimated at 140bpm).

An object oriented approach was taken to implementing this algorithm, defining a class based on
the clusters described by Dixon, which were then manipulated as outlined above.

4.7 Tempo tracking

A key characteristic of music played by human beings is that the exact tempo the music is performed at
will vary by small amounts over time. Sometimes this is used for dramatic or emotive effect (so-called
“rubato” in classical music) or sometimes it is unintentional. The fact of the matter however is that
almost no human being can play for more than an extremely short amount of time without drifting
slightly from the original tempo without something like a metronome keeping them in time. For this
reason, to determine where the pulse of a musical excerpt lies it is not enough just to find one pulse
duration, since over a relatively small amount of time, a consistent pulse will drift out of time from a
human performer. Instead we must be able to adjust the tempo subtly over time to stay in sync with
the performer.

We use the method outlined by S Dixon (2010) in the same paper of theirs which discussed tempo
estimation. Their method involves creating “agents” who traverse through the notes in steps propor-
tional to internal metronomes they possess. Agents who drift completely out of sync with the note
onsets are ignored completely but agents who land close to onsets adjust their internal metronomes so
as to try to stay better in sync. Scores are allocated to agents based on the size of the errors between
pulse estimations and note onsets, the salience of notes is also incorporated into the agent’s scores,
so agents which hit the onsets of more salient notes are rewarded. The highest scoring agent should
traverse a path consisting of pulse beats synced well with the note onsets present.

Several modifications were also made to the implementation outlined in the paper. Firstly, agents
whose associated tempo increased by too extreme an amount would be removed from the list of
potential agents. It was observed that agents had the tendency to increase their tempo so much that
they effectively “hit” every note onset, however the pulses generated by such agents clearly did not
represent the actual tempo of the piece, and often would involve the agent’s tempo doubling or tripling.
Agents whose tempos changed to be more than twice as fast as the original tempo or less than half as
fast were removed.
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Another modification made was to limit the total number of agents which were active at any time,
since for pieces longer than a few seconds, the number of agents was found to increase exponentially,
and after a short while, the program ran too slow to be useful. So the number of agents which could
simultaneously be active was capped at 50. If a new agent was to be added, it would only be added if
there were less than 50 active agents, or if it had a score higher than the 50th current agent (in which
case it would replace the “worst” of the 50 already existing agents).

Below is pseudocode outlining the modified tempo tracking system which was implemented. To
initialise the algorithm, agents with internal metronomes set to the top three tempo candidates from
the previous step are assigned to each of the first five note onsets in the piece. At the start of the
algorithm, there are therefore 15 active agents.

Algorithm 4 Tempo tracking algorithm

1: procedure TRACKTEMPO(Notes)

2 for each note N; do

3 for each agent A; do

4 if N;.start - A;.history.last >timeout then

5: remove agent A;

6 else if 0.5 - N;.original_tempo <N;.tempo <2 - N;.original_tempo then
7 remove agent A;

8
9

else
: counter = 0
10: while A;.prediction <N; - A;.pre_tolerance do
11: A;.prediction = A;.prediction + A;.tempo
12: counter = counter + 1
13: end while
14: if N;.onset - A;.pre_tolerance <A;.prediction </V;.onset + A;.post_tolerance then
15: if |N;.onset - A;.prediction| >inner_tolerance then
16: if # agents <50 then
17: duplicate A;
18: else if # agents = 50 and A;.score >Ayorst.Score then
19: duplicate A; and replace Aworst
20: end if
21: end if
22: Error = N;.onset - A;.prediction
23: Relative_error = Error/(A;.pre_tolerance + A;.post_tolerance)
24: Aj tempo = Aj.tempo + Error/counter
25: Aj.prediction = NN;.onset + A;.tempo
26: Aj.history = A;.history + N;
27: Aj.score = Aj.score + (1-Relative_error) - N;.salience
28: end if
29: end if
30: end for
31: Add newly created agents
32: Delete agents whose tempo and prediction too close
33: end for
34: Apest = argmax A.score
A

35: end procedure
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Figure 12: Above are two copies of the wavelength of a musical excerpt shown with two pulse schemas
(shown in red) generated by the implemented system. Both schemas start with the same pulse size
but only one has pulse tracking enabled. Above, after 10 or so notes, the tempo pulses (red) become
out of sync with the note onsets (in black). The second is adjusted using the process outlined above,

and as can be seen, stays in sync with the note onsets the whole way through. Excerpt is first eight
bars of Happy Birthday, played on Trumpet.

4.8 Quantization

Once the pulse of the excerpt has been determined, it becomes possible to convert the absolute timing
information deduced about the notes in the excerpt to the relative timing information required to notate
it as sheet music. In western notation, note durations are always given in terms of some relatively
simple fraction of the pulse length (e.g. there are exactly two eighth notes in one beat interval, an eighth
note triplet has duration equal to one third of the pulse length, etc.). The process of converting from
absolute duration to these discrete fractional relative durations is called quantisation. Two approaches
were investigated for performing this task. Like with tempo estimation, the first method will be
referred to as the “naive” method as it takes a relatively straight-forward approach to the problem
but its simplicity leads to certain disadvantages. The naive method effectively consists of subdividing
the pulse schema into discrete intervals and “snapping” the note onsets to the grid point they are
closed to. By choosing a variety of different subdivisions and scoring them based on certain criteria,
the “best” quantisation can be found. Details of how different grid subdivisions. An issue which
becomes clear when using this naive approach is that the quantisations this method produce will often
be “accurate” but will look odd to the human eye, especially for someone who has experience reading
sheet music. The biggest challenge when quantising notes is to strike a balance between accuracy and
human readability, which is what the second method investigated attempts more systematically to do.
The first task both quantization methods must do is split the list of unquantized onsets into a
discrete list of sections based on where the tracked pulses in the system lie. The notes within each
section can then be quantized and recombined to give a complete sequence of quantized notes.

Maximum a-posteriori (MAP) approach

We have already discussed the basic logic underlying MAP estimation. In order to fully implement a
MAP solution to the problem of quantization, it is necessary to more precisely define the statistical
distributions we are concerned with. In this scenario, it is impossible to empirically gather the infor-
mation about the distributions involved in our problem by searching in the real world. Instead we
must make assumptions about these distributions and how they behave. Firstly, let us break down
exactly what it is we need to more precisely define.

The prior p(c) - The prior indicates how “likely” it is that our quantisation ¢ would actually ap-
pear in a written score and can be seen as a quantification of how complex the quantization we choose
is. We define the formula for the prior as:

ple) =Y p(c|S)p(S)
S



Which follows from the law of total probability, where S is a subdivision schema for our given interval.
A subdivision schema is a list of small primes which we use to subdivide the interval being quantized
into a discrete grid. In our implementation, we use two subdivision schemas, S; = [2,2,2], S2 = [2, 3].
The prior of each schema is defined as:

P(S) = exp(=¢ Y w(s))

Where w is a simple weighting function defined as w(s) = 0if s = 2 and w(s) =1 if s = 3. And
p(c|S) is defined as:
p(c|S) = exp(—yDEPTH(c, 5))

Where DEPTH(c, S) defines the depth of ¢ with respect to the division schema S. The depth is
calculated using the following algorithm.

Algorithm 5 Depth algorithm

1: procedure DEPTH(c, S)

2 iterations = 0

3 depth =0

4: prime_product = 1

5: for s; in S do

6 iteration = iteration + 1

7 prime_product = prime_product *s;

8 for i € {0,1,..prime_product + 1} do
9: for ¢; in c do

10: if In : ¢; xn = i/prime_product then
11: depth = depth + iteration
12: remove c; from c

13: end if

14: end for

15: end for

16: end for

17: depth = depth + (iterations + 1) * # onsets remaining in ¢
18: return depth
19: end procedure

Combining what we have outlined here allows us to determine the prior for a given quantization, p(c).

The conditional probability p(t|c) - The conditional probability p(t|c) can be seen as a mea-
sure of how closely the quantization ¢ matches t. We will assume that the fluctuations from the true
pulse in the unquantized onsets are caused by a normal distribution with average zero, meaning for
the case where we have just one point, p(t|c) can be taken to be:

pltlc) = \/;Tanp(_ ";;ﬁ)

However since within a given interval there will be multiple onsets, and the errors |¢; — ¢;| will be
covariant, we must generalise our normal distribution to the case where ¢ and t are vectors. We take
the covariance matrix to be:

L pr2 o Pk
= 52 P1,2 1 Pn,m :

Pn,m

Pk .- - 1
Where
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)\2

Pnm = 77(?071 - Cm)2)

This then allows us to generalise our normal distribution to the case where we have v, s as vectors.
In that case:

1 1
7exp( — -yt - c))
Vv (2m)F[E] 2
We have now seen how it is possible to computer p(c|t) and p(c), thus these two parts can be
combined to allow us to find the posterior probability p(t|c). To find our optimum quantization, it is
now a case of finding argmax p(t|c).

p(tfc) =

It is not feasible to pgrform this search over the space of all quantizations, as this is an extremely
large set. Instead we narrow our search The algorithm quantises the notes in the input by breaking
down the input rhythm into sections of a given size based on the tempo pulse derived from the tempo
tracking part of the system. For each section, the interval is then subdivided into a grid using two
different schemas (one of which allows for the possibility of triplet rhythms occurring). For the first note
onset in the unquantized rhythm, we find the n grid points it is closest to (n = 2 proved a satisfactory
value), each of the n gridpoints chosen represent the first quantized onset in a quantization candidate.
For each of the other unquantized notes chosen, we iterate through all the candidates we have we
create n copies, and add one of the n gridpoints closest to the note’s onset. Since we know the rhythm
represents a monophonic melody, we consider the n closest grid points not “already taken” by another
note - since two notes shouldn’t be mapped to the same grid point as that implies polyphony. Once
this has been done for all notes in the interval, we have a set of quantization candidates which is
large enough to include all “reasonable” candidates which we should consider, but small enough to be
analysed in a reasonable amount of time. Once these candidates have been found, it is simply a case of
using the MAP approach to score each one and then choose the one with the best score. A variety of
parameters are employed by the MAP based algorithm. The parameters used were those found to be
optimal in the paper outlining the method [CDKO00], with the exception of . A high 7 can be seen as
indicating preference for simpler quantizations, and it was found that increasing the value from that
given in the paper to v = 1.0 provided more appropriate quantization results. The other parameter
values were: ¢ = 1.43, n = 0.83, A = 3.07, and § = 0.053

Naive method

The naive method takes the approach of simply “snapping” each note to the closest grid point for
a variety of grid resolutions, and then scoring each possible quantization based on how closely it
matches the unquantized rhythm. This method is susceptible to prioritising accuracy by choosing very
complex notations so an effort is made to balance the effects of this by penalising the use of grids
with higher resolutions, so as to attempt to balance out the algorithms weighting of accuracy versus
complexity. This is done by taking the sum of the distance between each of the quantized onsets and
their unquantized counterparts, and multiplying it by the number of gridpoints in the grid chosen for
example, if the interval was split into 16 subdivisions, then the final score would be multiplied by 16.

For a given rhythmic block (blocks of size 2 beats were considered to be a good size), we overlay a
grid on the box. We choose grids containing a number of grid points which is the product of a small
set of small primary numbers (i.e. 2 and 3), so we experiment with block size 4 (primes: (2,2)), 12
(primes (2,2,3), 3 (primes: (3)), etc. To generate the quantization associated with the grid, we “snap”
each onset to the closest grid point, assuming there is no onset already snapped there.
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Algorithm 6 Naive quantization

1. procedure QUANTIZE(onset, grid_resolution)

2: quantized_onsets = [ ]

3: for each onset O; do

4: find argmin(|O; — (n/grid_resolution)|) where n/grid_resolution not in quantized_onsets
n

5: quantized _onsets.add(n/grid_resolution)

6: end for

7: end procedure

We then score a given quantization as:

Algorithm 7 Naive quantization scoring

1: procedure SCOREQUANTIZE(onset, grid_resolution)

2 quantized_onsets = QUANTIZE (onsets, grid_resolution)
3 score = 0

4 for i € {0,1,...1en(onsets)} do

5: score = score + |onsets][i] - quantized_onsetsi]|

6 end for

7 score = score * grid_resolution

8: end procedure

So the to find the optimal quantization Oy for a list of onsets O using the naive method, we find:
0, = QUANTIZE(O, argmin(SCOREQUANTIZE(O, n)))

Where n € {1,2,3,4,6,8,12,16}.

4.9 Determining the key signature

Although there do exist algorithms and methods for estimating the key signature of pieces of music
which make use of considerably advanced techniques from statistics, machine learning, etc. [Tem02]
INLAFT9] it was found that a relatively simple approach to determining the key signature of the piece
of music in question was more than sufficient for the purposes of this project. The more advanced
methods are often employed to determine the key signature of an excerpt directly from the source
audio, however having already derived the notes present in the excerpt, the task is a lot easier.

We consider twelve standard key signatures in western music (we do not consider enharmonically
equivalent keys), and each key signature corresponds to a major (and relative minor) scale which
contains seven notes from the standard twelve notes of the octave. (e.g. the key signature F corresponds
to the F major scale which contains the notes F, G, A, Bb, C, D, E). Each key signature is uniquely
determined by their seven constituent notes. The key signature of the piece of music in question was
determined by counting how many of the notes in the excerpt “belonged” to each of the twelve standard
musical key signatures (e.g. Bb belongs to the key of F, but G# does not). The “correct” key signature
was taken simply to be the one which fitted the most notes.

The only non-trivial difficulty encountered in this section was as a result of enharmonics: musical
notes which are notated differently but which sound the same, such as the notes A4 and Bb. The original
implementation of the algorithm used note names as the basis for the pattern matching approach taken,
however this had to be replaced with using MIDI note numbers so as to avoid problems stemming from
the occurrence of enharmonics.
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Algorithm 8 Key signature algorithm

1: procedure KEYSIGNATURE(Notes)

2 for each note N; do

3 for each key signature K; do

4 if N;.pitch € K;.notes then
5: Kj.score = Kj.score + 1
6 end if

7 end for

8 end for

9

Kpest = argmax K .score
K
10: end procedure

4.10 Determining the time signature

A more abstract characteristic which must be deduced in order to transcribe a musical recording is
the recording’s time signature. In essence, a piece’s time signature represents the piece’s rhythmic
structure at a level higher than that of the pulse, this higher level is often referred to as the meter
of the piece. A piece in $ time will generally be perceived by listeners as having every third pulse
stronger than the rest. Similarly in § it would be every fourth pulse. Two methods were investigated
for determining the time signatures of excerpts. As discussed already, the candidate time signatures
considered by the system are 4, %, and §

Salience method

The first method analysed meter through the lens of musical salience. To determine which time
signature is most appropriate for a piece, we iterate through each time signature and find the average
salience of each of the notes the time signature predicts should be strong beats (e.g. for 3 we find the
average of the saliences of every sixth eighth note). We do this not just starting on the first note but
also for each note in what would be the first bar of music, this means that if the first note in the piece
does not actually begin a bar (an anacrusis),and hence do not correspond to strong beats, the average
salience found starting on other notes in the first bar may still indicate the signature in question is
still the most appropriate. The time signature with the highest average salience is taken to be the
time signature to be used for the transcription. We can take a simplified view of the three considered
time signatures as defining the number of eighth notes which occur between successive strong beats.

eigth notes between

Time signature
strong pulses

474 8
3/4 6
6/8 3

Pseudocode for for the salience-based time signature algorithm can be found below:
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Algorithm 9 Salience time signature algorithm

1: procedure TIMESIGNATURESALIENCE(Notes)
2 for each k in {3, 6, 8} do
3 for each note in first bar IV; do
4: n=>0
5: while N;.start+k -n < N .start do
6 if N, where Nj.start = N;.start+k - n then
7 scorey; += SALIENCE(N;)
8 end if
9: n+=1
10: end while
11: scorey, = scorey, /n
12: end for
13: score, = max(scorey;, )
14: end for
15: kbest = argmax scorey,
k

16: end procedure

This algorithm returns the eighth note increment which gives the highest average salience, this can
then be converted to the corresponding time signature using the table already given above.

Rhythmic similarity method

The second method investigated compared rhythmic similarity of consecutive measures. In most forms
of music, rhythmic ideas will be repeated or restated in accordance with the meter of the piece, e.g. a
piece in § will use rhythmic phrases lasting 3, or 6, (or 9, etc.) quarter notes, while a piece in 4/4 will
have phrases lasting for multiples of four quarter note. By experimenting with different bar lengths and
observing how rhythmically similar consecutive bars are to each other, it is possible to gauge how likely
different time signatures are to corresponding to a given piece of music. Rhythms can be represented
in a large number of ways [TT04]. Different ways of representing a rhythm entail different methods to
measure how similar one rhythmic passage is to another. In this project, two representations, and thus
two similarity measures were investigated. The first representation of rhythm considered is a basic
representation of the rhythm as a sequence of binary digits.

The length of the binary sequence corresponds to the rhythmic resolution of the sequence, so
for comparing passages of notes four quarter notes long who’s smallest rhythmic denomination is a
sixteenth note, we would use binary sequences of length 4x4 = 16. The binary sequence encodes which
times onsets occur with respect to the underlying rhythmic grid. Below is an illustration of how the
vector representation encodes the onsets times using the example of a grid with 8 subdivisions.

et
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Figure 13: Illustration of how the vector for a given rhythm is generated, showing the notated rhythm
(top), a symbolic representation of how the onsets fall on a grid (middle) and the corresponding vector
(bottom).

To compare the rhythmic similarity between two of these rhythmic binary sequences, we consider
the sequences as vectors with entries from the set {0,1} and consider the euclidean distance between
them. Recall the euclidean distance between two vectors u and v is defined as:
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SiMy(u,v) = lu—v| =

That is to say we consider vectors which are close to each other as more similar than vectors which
are farther apart.

We also consider a second representation of rhythm and a corresponding separate measure of sim-
ilarity, first described in [Gus87], the so called Temporal Elements Displayed As Squares (TEDAS)
representation of a rhythm. This representation is related to, and can be derived from the binary
representation given above. The TEDAS representation of a rhythm can be seen geometrically as the
union of boxes with side length corresponding to the duration of each rhythm in a passage. Below can
be seen the TEDAS representation of the common son clave latin rhythm.

!
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!

01 2 3 4 5 6 7 8 910111213 141516

!

[3[3[3]3[3[3[4] 4[4[ 4][2]2] 4] 4[4]4]

Figure 14: Derivation of TEDAS representation of Son clave rhythm (geometric visualisation taken
from [T704])

To measure the similarity between two TEDAS representations of rhythms, we take as inspiration
the measure outlined by Hoffman-Engl in [HE02]. For two vector representations of a TEDAS rhythm
v and u of length n, their similarity is computed as:

n =10 22
&wmm:¢szﬂn“ wl?)

n

The use of the exponential operator makes sure notes of longer duration do not have a dispropor-
tionately large effect on the similarity measure. The closer SIMILARITY (v, u) is to 1, the more similar
the rhythms. For determining the time signature, we want to be able to compare the average similarity
of different lengths of rhythmic phrase, so we also normalise the similarity measure like so:

SiMz (v, u) — max SIM2 (X, y)
xy

1 — max SIM3(X,y)
x,y

SiMy(v,u) =1 —

This also has the advantage of making this measure more similar to the Euclidean distance measure
where a smaller output indicates more rhythmically similar phrases. To determine which time signature
leads to the best similarity measure we apply the following algorithm.
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Algorithm 10 Rhythmic similarity algorithm

1: procedure TIMESIGNATURESIMILARITY (Notes)

2 for each k in {3, 6, 8} do

3 counter = 0

4 for each consecutive rhythmic phrase of length k& 16th notes, v; do

5: for each consecutive rhythmic phrase of length £ 16th notes, u; do
6 scorey, = scorey, + SIM(v;, u;)
7 counter = counter + 1
8

9

end for
end for
10: scorey, = scorey /counter
11: end for
12: kbest = argmax scoreg
k

13: end procedure

In the algorithm above, SiM refers to either of the two similarities measures discussed, with v;
and u; being the appropriate vector representations of the rhythmic passages for the chosen similarity
measure.

One interesting thing to note is these two different ways of measuring rhythmic similarity provide
different answers to the question “what is the least similar pair of rhythms?”. For the euclidean vector
distance representation, the two most different rhythms of length n are the rhythms corresponding to
a vector of all 1s compared to a vector of all 0s. (i.e. an empty bar is most rhythmically different from
a bar consisting of all 16th notes), while for the chronomtonic representation, the two most different
rhythms are the empty vector, and the vector corresponding to a single note on the first beat of the
phrase (i.e. an empty bar is most rhythmically different from a bar consisting of a single sustained
note).

4.11 Typesetting

Once we have extracted all the necessary information from our excerpt, the final step is to actually
typeset the result as sheet music. There are many tools available to assist with automated music
typesetting so it wasn’t necessary to spent a great deal of time during the project working on this
aspect of of the system. The system exported sheet music in two formats, as image files and also as
MusicXML, an XML-based file format which can be read by many standard music notation programs
(e.g. Musescore, Sibelius, etc.)

Typesetting was relatively straight forward, the music21 python library provides a stream object
which notes and other musical features can be added to (e.g. time signature, key signature, etc.),
which can then be used to export an image or musicXML file containing the information loaded into
it. Therefore typesetting was simply a case of loading all the information which had been derived:
Notes, tempo, key signature, time signature, into a stream object which was then used to export to
the appropriate format. music21 utilises the open source musical typesetting program Lilypond in
order to create the final sheet music images. Lilypond automatically determines the clef to notate the
transcription using based on which clef will have the most notes within the five normal stave lines.

The algorithm for exporting the transcription was straightforward.
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Algorithm 11 Typeset music

1: procedure TYPESET(Notes)

2 create music21 stream S

3 for each note NNV; in notes do

4: convert N; to music21 note object N/
5: S.add(NY)

6: end for

7 Set S time signature

8 Set S key signature

9 Set S tempo

10: generate image from S using Lilypond
11: Export S as MusicXML

12: end procedure
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5 Artefact evaluation and case studies

This section discusses the methodology taken to quantify the robustness and quality of the different
solutions implemented to the variety of problems tackled throughout the project, and holistically
evaluate the system as a whole. For each part of the system analysed, a discussion is given regarding
what is being tested and relevant data is reported.

Due to the number of different working parts which constitute the system as a whole, and due to
the difficulty associated with systematically evaluating how “close” two pieces of sheet music (e.g. the
original and that generated by the program) are to each other, the overall robustness of the system is
demonstrated by showcasing a selection of example transcriptions. Each example includes discussion
of what the system gets right and what the system gets wrong in the description, along with discussion
of potential explanations for unexpected behavior.

5.1 Quantisation
evaluation methodology

To compare the two quantization algorithms implemented in the project, both algorithms were run
for a number of simulated rhythmic performances. The performances were generated by looping a
rhythmic phrase and adding random noise to the onsets so as to simulate the errors and idiosyncrasies
present in human performance. The output of both quantization measures were evaluated in two ways.
Firstly the accuracy of the quantization was considered. How close was the average quantized beat to
an actual beat in the “performed” rhythm. This is given in the table below as the average distance
between the quantized note and the actual note, measured in quarter-notes (i.e. 0.3 means that
quantization moved each note onset by 0.3 quarter notes on average). The second measure measured
how complex the quantized rhythms ended up being. This was measured using the prior p(c) defined
in [CDKO0Q]. The rhythmic motifs were repeated across a broad range of tempi, from 65 to 115bpm,
and the values given in the table below represent the average values for each part of the system. Each
algorithm was also given a correct pulse to quantize the input to.

(A = average difference between quantized and non-quantized onsets, in quarter notes, B = p(c)
of quantized rhythm.)

Standad Deviation (ms)
0 15 25 35

Rhythm Algorithm A B A B A B A B
Son Clave Naive 0.0131 0.0209 | 0.1788 0.0244 | 0.2194 0.0244 | 0.1981 0.0374
MAP 0.0 0.0123 | 0.0121 0.0133 | 0.016 0.0202 | 0.0184 0.0296
Waltz Naive 0.0049 0.0364 | 0.1965 0.0643 | 0.2643 0.0813 | 0.2254  0.076
MAP 0.0 0.0201 | 0.0126 0.0222 | 0.0163 0.0313 | 0.0182 0.0378
8th notes Naive 0.0031 0.0034 | 0.1784 0.0147 | 0.1409 0.012 | 0.1007 0.0133
MAP 0.0 0.003 | 0.0118 0.0031 | 0.0163 0.0031 | 0.0183 0.0038
Bossa Nova Naive 0.0031 0.0122 | 0.2942 0.0152 | 0.2155 0.0162 | 0.2716 0.0289
MAP 0.0 0.0125 | 0.0121 0.0125 | 0.0165 0.0124 | 0.0184 0.0132
Mission Impossible Naive 0.0207 0.1689 | 0.3099 0.196 | 0.2497 0.1952 | 0.2523 0.1916
MAP 0.0 0.1386 | 0.012 0.1398 | 0.0168 0.1501 | 0.0184 0.1512
Overall Naive 0.009 0.0484 | 0.2316 0.0629 | 0.218 0.0658 | 0.2096 0.0694
MAP 0.0 0.0373 | 0.0121 0.0382 | 0.0164 0.0434 | 0.0183 0.0471

Remarks

We can observe that the MAP estimation method consistently out performs the naive method in
regards to both accuracy and simplicity which is somewhat surprising. We would expect that the
naive method might prioritise accuracy at the expense of simplicity, however it is outperformed by the
MAP method in both regards. This indicates that overall, unsurprisingly, the more complex MAP
estimation method for quantization provides a higher quality result than alternative, naive method.
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5.2 Key signature
evaluation methodology

To evaluate the algorithm implemented for detecting the key signature of a piece, data was gathered
consisting of MIDI versions of pieces not containing any modulations (changes of key) whose key was
known. The note pitches were then extracted from the MIDI files and fed to the algorithm. The
algorithm’s output was then compared to the known key.

Two quantities were tallied. Firstly, how often was the key signature correct, and secondly, how
often the key signature predicted was a perfect fifth /perfect fourth away from the correct key signature.
Key signatures differing by only a single note are separated by perfect fifths/perfect fourths (e.g. F
contains 1 flat, C contains 0 flats or sharps, and G contains one sharp). If the algorithm is able to
determine the key to within a perfect fifth/fourth, it indicates the algorithm is close to agreeing with
the known correct key. Relatedly, transcribing a piece in a key a perfect fifth/fourth from the correct
key will still result in a piece of sheet music which would be relatively easy to read for a musician,
as opposed to if a key was chosen at random, in which case, the sheet music would likely be very
confusing and difficult to read. Hence, it is valuable to know the frequency of these “near misses”.

Data set | # of pieces | Correct Key (%) | Fifth/fourth away from correct key (%)
Bach 31 96.8 100.0
Mozart 17 100 100.0
Beethoven 18 66.7 94.4
Total 66 89.4 98.5
Remarks

The basic algorithm implemented performs well, almost without fail it is able to determine the key of
the piece to within a perfect fifth/fourth, and for the vast majority (almost 90%) of cases, it is able
to determine the key correctly. This is impressive since the key signature of a piece is a characteristic
not objectively determined just by the notes in the piece, and due to the relationship between western
music theory and key signatures, there are pieces of music which don’t contain clear transpositions
but for which it can be debated what key is most “correct” or “appropriate” [Man02].

5.3 Time signature
evaluation methodology

To test the robustness of the time signature detection capabilities of the system, a similar approach
was taken as to with the key signature. A selection of MIDI files containing the note information for a
variety of works with a variety of time signatures was fed into the algorithms and the rate of success
for each algorithm was recorded. The tempi of the pieces in question was known and since the notes
came from a midi recording, they were already quantized.

Time signature correctly detected (%)
Rhythmic Similarity Salience
Time signature | # of pieces | Chronotonic Euclidean | Linear Nonlinear
4/4 23 47.8 13.0 65.2 60.9
3/4 25 48.0 20.0 40 24.0
6/8 3 0.0 100.0 0.0 0.0
total 51 45.1 21.6 49.0 39.2

Remarks

The results for the time signature experiment are somewhat inconclusive, partially this may be to do
with the limited test data which was found to be available (although there are thousands of free MIDI
files available, very few are monophonic and have the note onsets defined in an easy to parse manner).
From the results obtained, we observe that neither algorithm performs exceedingly well in this task.
Although the test data does contain a few pieces in §, the majority are in § or 3, so if we wanted to have
confidence that our methods worked, it would be encouraging if they had overall success rates better
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than 50%. Another potential issue may be the test data, which consisted wholly of solo works by Bach.
Many of these pieces incorporate long streams of sixteenth notes rather than more rhythmically varied
phrases. For the rhythmic similarity approach, without much rhythmic information to go on, it would
be unsurprising for the accuracy of the algorithm to be significantly reduced.

5.4 Tempo detection

One of the most important aspects of the system was the ability to detect and track the tempo of
a recording. To test the tempo detection ability of the system. Firstly we will examine the tempo
detection system

Tempo detection

The tempo tracking algorithms implemented take as input a list of note onset times in milliseconds
(ms). To evaluate them, a set of lists of simulated note onset times was generated. The onset lists
were designed to simulate rhythms played by human beings and ranged in how accurate the beat was
followed and how much the overall tempo fluctuated.

In order to accurately simulate a rhythm source performed by a human, two sources of controlled
random variation were added. Firstly, the onset of each note was displaced by an amount € based on
a normal distribution, secondly, the overall tempo fluctuated with respect to a randomly generated
signals have a frequency spectrum such that the intensity of a frequency, S(f) is inversely proportional
to f itself.

This is in contrast to white noise where S(f) is constant. Pink noise appears very frequently
in natural systems and systems involving the human body, including fluctuations in tempo tapping
without a metronome |[RPVT15][SVS01]. For the experiments below, the pink noise generated took
a = 0.7. To test the tempo detection system, the standard deviation of the onset times was varied
and tests were performed twice, once with no variation in tempo, and once with pink noise variation
in tempo, the pink noise generated had mean zero and standard deviation 1.5, which was found as a
good amount to simulate human like tempo fluctuation.

(Note A = correct tempo is first estimate (%), B = correct tempo one of top 3 estimates (%), C
= First guess simple ratio of correct tempo, where a simple ratio is either % %, %, %, or the inverse of
one of these fractions (%)).

No tempo noise:

Standard deviation (ms)
0 15 25 35

Pulse type Algorithm A B C A B C A B C A B C
Constant Sth notes Dixon 100.0 40.7 100.0 | 100.0 40.7 98.1 | 80.2 33.3 852 | 65.7 259 69.4
Naive 59.3 40.7 100.0 | 59.25 42.59 100.0 | 54.3 40.7 100.0 | 50.0 37.0 97.2
Son clave Dixon 85.2 185 100.0 | 66.7 185 815 | 42.6 13.0 574 | 358 11.1 494
Naive 63.0 370 926 | 59.3 40.7 77.8 | 50.0 352 66.7 | 444 333 61.7
Bossa Nova Dixon 85.2 185 100.0 | 72.2 16.7 96.3 | 5b3.1 13.6 76.5 | 426 11.1 62.0
Naive 74.1 40.7  66.7 66.7  38.9 59.3 | 3.1 321 519 | 454 287 481
Mission Impossible Dix.on 100.0 40.7 100.0 | 96.3 38.9 96.3 | 74.1 27.2 76.5 | 620 22.2 61.1
Naive 66.7 29.6 88.9 62.0 352 944 | 55.6 346 93.8 | 50.0 30.6 89.8
Waltz Dixon 100.0 40.7 100.0 | 98.1 389 96.3 | 84.0 34.6 827 | 71.3 30.6 70.4
Naive 70.4 40.7  96.3 63.0 40.7 98.1 | 543 38.3 95.1 | 47.2 352 88.9
Overall Dixon 94.1 31.8 100.0 | 86.7 30.7 93.7 | 66.8 24.3 757 | 55.5 20.2 62.5
Naive 66.7 377 889 | 620 396 8.9 | 535 36.2 815 | 474 330 77.1

Tempo noise:
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Standard deviation (ms)

0 15 25 35

Pulse type Algorithm A B C A B C A B C A B C
Constant 8th notes Dixon 48.1 29.6 48.1 | 481 204 389 | 42.0 185 358 | 38.0 157 324
Naive 444 33.3 59.3 | 59.25 42,59 100.0 | 35.8 259 46.9 | 33.3 23.1 444
Son clave Dixon 29.6 14.8 33.3 | 24.1 11.1 296 | 21.0 86 272|185 74 250
Naive 40.7 37.0 59.3 | 352 27.8 46.3 | 309 23.5 39.5| 28.7 194 34.3
Bossa Nova Dixon 185 3.7 222 | 148 3.7 24.1 | 13.6 2.5 247|157 28 24.1
Naive 33.3 185 29.6 | 14.8 3.7 24.1 | 24.7 13.6 27.2 | 222 10.2 23.1
Mission Tmpossible Dixon 185 185 259 | 204 11.1 204 | 222 11.1 259|213 93 24.1
Naive 33.3 222 444 | 222 11.1 333 | 222 11.1 333|185 83 30.6
Waltz Dixon 370 185 40.7 | 333 185 333 | 296 173 284 | 28.7 16.7 27.8
Naive 259 148 333 | 204 148 333 | 222 148 3211|213 13.0 278
Overall Dixon 30.3 17.0 34.0 | 28.1 13.0 293 | 25,7 11.6 284 | 244 104 26.7
Naive 355 252 452 | 304 20.0 474 | 272 178 358 | 24.8 14.8 32.0

Remarks

Somewhat surprisingly, the performance of the two algorithms is relatively similar. For less noisy
signals it seems that Dixon’s algorithm outperforms the naive approach somewhat, however especially
for noisier signals, the naive approach actually performs slightly better than Dixon’s. One thing not
considered here however is the efficiency of the two algorithms. Performing the differential evolution
optimisation step in the naive algorithm means it is significantly slower than Dixon’s algorithm.

5.5 Tempo tracking

In order to test the system’s tempo tracking ability, rhythmic pulses were generated as before, with
pink noise again being used to generate tempo variation over time. For each onset which lay on a
strong beat with respect to the pulse of the rhythm, it was measured whether the pulse generated by
the system coincided with it (within a 3% tolerance). The percentage of strong beats which aligned
with the calculated pulse is recorded in the table below.

Standard deviation of pink noise
Rhythm type 0.0 1.0 | 2.0 3.0
Waltz 100.0 | 77.9 | 62.2 54.7
Constant 8th notes | 100.0 | 85.3 | 70.5 55.2
Bossa Nova 50.0 | 47.8 | 52.2 56.5
Mission Impossible | 100.0 | 84.8 | 74.4 60.9
Son Clave 68.5 | 76.4 | 65.1 58.3
Overall 83.7 | 74.4 | 64.9 57.1

remarks

Unsurprisingly, overall as the tempo deviation increased, the performance of the algorithm gradually
worsened. This was the expected behavior of the algorithm, and even when the intensity of the pink
noise was increased, the algorithm was still able to stay in time a relatively high percentage of the time

5.6 Case studies

In order to more comprehensively evaluate the robustness of the system, a set of 5 example tran-
scriptions are discussed in this section. For each section we evaluate the subjective quality of the
transcription and discuss possible explanations for mistakes or discrepancies. The five excerpts were
taken from a variety of places. Each excerpt was processed using Audacity, an open source basic audio
editing suite to normalise the audio level to a suitable level and export the audio in the correct format
to be processed by the system (.wav files with a 48kHz sample rate).
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1. Happy Birthday

Background: The first excerpt we will look at is a performance of a trumpet player playing the
well-known traditional tune Happy Birthday. The recording was found on Youtube.

Transcription

Settings used to generate transcription

Sub-task Approach
Time Signature | Rhythmic similarity
Quantization MAP
Tempo Dixon algorithm

Transcribed Key: Eb (Correct)

Transcribed Time Signature: 3 (Correct)

Discussion: The system manages to product a good transcription of Happy Birthday. The most
obvious mistake is the awkward triplet-based rhythm observed in measure 7. This can be traced
to the detection of a false positive onset time. Since the false positive appears at an essentially
random moment (it does not relate to the rhythmic structure of the other correctly detected notes),
it unsurprisingly results in an awkward quantization for that section. Another false positive onset is
present in the fifth bar however may be harder to notice as it coincidentally gets quantised to the
dotted-eighth-then-16th-note pattern which is a reoccurring rhythmic motif in the melody of Happy
Birthday. Both the time signature and key signature of the piece are transcribed correctly and the
tempo has been chosen so as to allow the notated notes to be of sensible durations. Overall this is
quite a strong transcription with only a couple of minor mistakes.

2. The White Stripes - Seven Nation Army (intro)

Background: The next excerpt is taken from the first few measures of the White Stripes song
“Seven Nation Army”, it is played on an overdriven bass guitar.

Transcription

Settings used to generate transcription

Sub-task Approach
Time Signature | Rhythmic similarity
Quantization MAP
Tempo Dixon algorithm

Transcribed Key: G (Correct)

Transcribed Time Signature: $ (Incorrect)

Discussion: The system produces a satisfactory transcription of the introductory riff to Seven Nation
Army. The time signature is not correctly detected, however the time signature chosen does make sense
in the context of the pulse which was detected and quantization chosen. The underlying pulse detected
by the system appears to be a factor of % slower than the actual tempo; in a correct transcription the
second measure would consist of two half notes, whereas in ours it consists of two dotted quarter notes
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(which have % the duration of a half note). In the context of this incorrect pulse then it does make
sense to notate the excerpt in 3 since this will place the bar lines between the same notes as they would
be if the pulse was detected correctly. Since the detected pulse is related what would be the correct
pulse by a relatively simple ratio, the result is still a fairly readable transcription. The other mistakes
which we can observe are some slightly awkward quantization choices: In the third bar, the second
and third notes are off by a 16th note from what would be the correct rhythm, and similarly the final
bar has a doubly dotted eighth note as the final note of the excerpt, which would be an uncommon
duration to conclude a bar on, instead the more sensible choice would be to notate it as just a quarter
note.

3. Yankee Doodle

Background: The next excerpt is a well known traditional melody and was recorded by the author,
played on an acoustic guitar. There is no standard key to play Yankee Doodle in, in the recording it
was played in F.

Transcription

Settings used to generate transcription

Sub-task Approach
Time Signature | Rhythmic similarity
Quantization MAP
Tempo Dixon algorithm

Transcribed Key: F (Correct)

Transcribed Time Signature: § (Incorrect)

Discussion: The system produces a good transcription of Yankee Doodle. The only mistake made
was in the time signature, however apart from that, the transcription does not make any mistakes.
The fact that the melody consists almost solely of quarter notes with just a couple of half notes as well
means that the tempo detection system has a relatively easy time “locking in” to the correct pulse,
since there aren’t any shorter subdivisions to throw off the system.

4. Three Blind Mice

Background: The next excerpt is a performance of three blind mice played on a toy glockenspiel,
the recording was found in a youtube video.

Transcription
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Settings used to generate transcription
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Sub-task Approach
Time Signature | Rhythmic similarity
Quantization MAP
Tempo Dixon algorithm

Transcribed Key: C (Correct)

Transcribed Time Signature: § (Correct)

Discussion: The system struggled in producing a transcription of three blind mice. Despite the fairly
clear transients of the glockenspiel, several note onsets were not detected by the onset detector, this
is most noticeable in the first few bars. The sections containing notes played quite quickly challenged
the pulse detection system since it was relatively easy for agents to get swayed by an onset close to
the where the pulse actually lay. This had the knock on effect of making some of the quantisation
slightly awkward since the system was trying to quantize notes over an awkward time interval. despite
this, the system managed to correctly identify both the key and time signature of the excerpt and it
is easy to see the general shape and contour of the melody being played. Despite the overall quality of
this transcription not being extremely high, the outputted transcription still demonstrates the systems
knowledge of certain musical features of the excerpt.
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6 Critical appraisal

The main goal undertaken in this project was to create a full audio-to-sheet transcription system which
could transcribe simple monophonic musical recordings and export them as typeset sheet music. The
initial goals outlined for the project were changed as more understanding about nature of the problem
and the context surrounding it was learned. The updated goals for the project provided a rewarding
challenge, with many different techniques and approaches required to build and implement a system
to meet them.

One of the main challenges faced throughout this project was that of time allocation. The goal
to build a fully functional audio-to-sheet system, even with the restrictions placed on it in this case,
was a fairly ambitious one. Certain aspects of the project were necessarily limited by the amount of
time which could be dedicated to working on them. The task of creating an audio-to-score system
is broad enough that it would be possible to approach completing this tasks from a vast number of
perspectives, it is easy to imagine a Senior Honours or even Masters project which focused on the same
goals, only taking a more intense and longer approach to solving them. As noted at the start of this
project, the aim of this project was not to implement a state of the art system to rival the newest and
best MIR technology or recent deep learning approaches which have been taken to the problem, but
to balance complexity with attainability and first and foremost, develop a complete working system,
and this goal has been achieved.

Another aspect of the project which proved challenging was testing the implemented system. Since
the system does so many things, it proved difficult to develop a systematic way of testing the entire
system. Instead a hybrid approach was taken, where the most important parts of the system were
tested systematically and objectively while a more holistic evaluation was also undertaken by looking
at a variety of example transcriptions produced by the system.

With regards to the specific goals given for this project, all the basic goals were met and the
extended goal of providing support for a variety of instruments was also met, although this actually
turned out to be a relatively simple goal to fulfill, since pitch and onset detection systems generally
do not discriminate between different instruments greatly. Although the goals accomplished chiefly
consisted of primary goals, the primary goals required to build a full audio-to-score system were
relatively demanding and based on how time was allocated throughout the project, it seems that to
meet any further goals than those listed as primary ones would be somewhat unrealistic for a minor
project.

As we have already discussed, although there exist publicly available audio-to-score systems, it is
difficult to compare the specification of the system developed in this report to such systems since these
public systems are proprietary in general and require payment or subscription to use.

Compared to contemporary MIR research, the system outlined in this report does not demonstrate
as robust or broad a set of features as to what is available, however it is difficult to make a direct
comparison between these contemporary systems and the one discussed in this project, since these
contemporary projects are undertaken over longer periods of time and by individuals with far more
expertise in the field of MIR than the author did at the beginning of undertaking this project.

7 Conclusion

The chief goal of this project was to develop a full audio-to-score automatic transcription for simple
monophonic instruments. This goal was achieved, and a system able to transcribe melodies played
by a variety of instruments was developed. A variety of techniques and approaches to the problem
presented were investigated over the course of the project and the final system produced represented
the culmination and combination of a diverse set of procedures and algorithms.

There are many ways the functionality of the system could be developed given more time to work
on it. The system developed would provide a strong basis for developing a more robust automatic
transcription system, or a system with less restrictions on the types of recordings it could process. For
example it was already noted that the system will only transcribe pieces in 4, 3, or §, and despite these
time signatures covering a vast majority of western music, they are not exhaustive. Furthermore, a
more fully featured transcription system would probably support polyphonic transcription, the main
challenge in this regard would likely be developing accurate polyphonic pitch detection methods, which
is still a challenging problem in MIR. it would be possible to generalise many of the techniques and
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algorithms from this project to work with data containing simultaneous notes, and some problems
might actually be made easier, for example a more well motivated model for salience could possibly be
developed by considering the consonance and dissonance of the harmonies present and the number of
notes being played at a given time simultaneously. Overall the system developed over the course of this
project represents a full monophonic audio-to-score which could provide a strong basis for developing
more powerful transcription systems with more fully featured specifications.
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8 Appendix: Running the program

The system can be run as a python script on the command line. The modules used throughout the
system which are used by the system which may need to be installed were: aubio, colorednoise,
matplotlib, mido, music21, numpy, Pillow, PyAudio, pynput, scipy

The script can then be run from within the project directory as

python command line tool.py -i [PATH TO INPUT FILE] -o [PATH TO OUTPUT DIRECTORY]
To change algorithms used for the different sub-tasks by the system (i.e. use naive quantization

method instead of MAP method), options can be found at the top of the command line_tool.py file,
with directions on how to change options as required.
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