
CS3099 Software Engineering Team Project
Submitted: 15/04/2021

Biotin: A federated social media platform

University of St Andrews

Group B7

Kazio Wilowski

Supervisors:
Angela Miguel + Ian Gent

Members:

Abstract
Our goal was to implement a federated social media platform for University use. We adopted
the agile development methodology. As a supergroup we developed a common protocol to
allow for sharing of content and authentication. The protocol acted as a minimum
specification which groups could add additional features to. For example, we included a
moderation system. This highlights the key feature of federation which is independence of
instances.

This report outlines how we developed the project, what our solution looks like and why we
made the choices we did, and includes a critical evaluation of the project as a whole.

Declaration
We declare that the material submitted for assessment is our own work except where credit
is explicitly given to others by citation or acknowledgement. This work was performed during
the current academic year except where otherwise stated. The main text of this project
report is 13,915 words long, including project specification and plan.

In submitting this project report to the University of St Andrews, we give permission for it to
be made available for use in accordance with the regulations of the University Library. We
also give permission for the report to be made available on the Web, for this work to be used
in research within the University of St Andrews, and for any software to be released on an
open source basis.

We retain the copyright in this work, and ownership of any resulting intellectual property.

Contents
Abstract 2

Declaration 3

Contents 4

Introduction 5

Background 6

Aims and Requirements 7

Development Timeline 8

Project Details 10

Overview 10

Technology Stack 12

React 16

CSS 16

Loopback 4 17

Digital Certificates and Inter-Group Communication 17

User authentication using JWT 18

MongoDB 19

GitLab, nginx and running on the host servers 19

Features 20

Supergroup features 20

Extended features 22

Extension features proposed but not implemented 22

Changes in Plan 24

Testing Summary 26

Backend 26

Methodology 26

Authentication, Navigation and Basic Use 27

Inter-Server Certification 27

Voting 27

Authorization 27

Frontend 27

Continuous Integration (CI) 28

Software Development Methodology 29

Tools 29

Use of Agile + Scrum 29

Supergroup Interaction 33

Evaluation 34

Comparison to real-world technologies 34

Backend 34

Frontend 36

Agile & Scrum 37

Supergroup Interaction 38

Conclusions 39

Acknowledgments 40

Appendices 41

Appendix 1: Example of inter-server communication header construction 41

Appendix 2: Running Postman tests 42

Bibliography 43

Introduction
(180012847)

Background

A social networking service describes an online platform in which people may interact with
one another, primarily through the sharing of ideas and information. Currently, there exist
numerous social networks including Facebook, Twitter and Reddit, and these are actively
used by a large majority of the population around the world.

Federated social networks describe a particular decentralised implementation of the above
service, where “the leading federated social networking software is open-source” (Esguerra).
This allows for the creation of distinct social network ‘providers’ that follow the same
protocols, so that users within the federated social network may interact with each other,
regardless of which providers they use to access the network.

Advantages brought by this federated system include flexibility, transparency and a more
distributed system of authority. Apart from the increased diversity of choices offered to users
wanting to join the network, they address several concerns associated with centralised social
networks, which typically use private proprietary software. For example, a company
providing such a service may have incentives to handle a user’s information in an
undesirable manner, while restrictions may be enforced by (or upon) the company that
excessively limit the extent of interaction between users.

The aim of the Junior Honours project this year is to build a federated system in a similar
manner as described above, targeted for use in a university environment. Each group in the
supergroup would develop their own server hosting users and ‘sub-communities’ of their
own, while still being able to access the ‘sub-communities’ and associated content in all
other servers.

As a result of this, the structure of this federated system took a lot of inspiration from the
structures of communities in this university. It was ultimately decided that each server would
host a number of ‘forums’, each with a number of their own ‘sub-forums’, reflecting how
communities in St. Andrews could be nested in overarching categories: Specific modules
within a department, various teams of a sports society, or halls in the context of
accommodation.

The social features of the system were then derived from currently existing social networks.
While a federated system developed specifically for a university has not been made before,
social networks with similar purposes already currently exist. Reddit, in particular, allows
users to have extended discussions in ‘subreddit’ communities focused on certain subjects.

Common features of the Federated system were therefore based on the discussions in
‘subreddits’. Users could make posts in subforums, comment on posts and other comments,
and ‘upvote/downvote’ each kind of submission - essentially contributing to a score which
could decide a post’s priority. Individual users would also have information of their own for
others to view, including a profile picture, description, and a list of all their posts or comments
across servers.

Aims and Requirements

The aim for each group is to develop a system that allows users to interact with one another
in a university-friendly environment, over a web-based interface. The system should have
enough flexibility to facilitate discussions on various topics involved with university life,
including its academic, social and community-oriented aspects.

Meanwhile, the general aim of the module itself is for members to work effectively as a team
while developing software, and in particular, organise the development of the system through
following the Scrum methodology and incorporating Agile practices.

Several initial requirements were set in the first hand-in, essentially noting the basic features
of a decentralised online discussion forum: Registering users, posting/commenting on
‘articles’, and a protocol allowing content to be propagated between instances. Only vague
guidance was provided beyond this point, and students within the supergroup needed to
discuss how to develop the specification to satisfy the project aims.

As supergroup discussions progressed, it was agreed that an API protocol would need to be
specified so that each group’s system could communicate properly with one another. The
endpoints proposed ultimately led to a common set of requirements between groups,
including a backend REST API following HATEOAS principles, as well as a structure of
‘forums’ and ‘subforums’ to organise posts as described above.

Further supergroup requirements arose as endpoints in the protocol were developed. These
included storing individual information associated with a user (e.g. profile images), advanced
information in posts (such as time of creation/last edit), and an upvote/downvote system with
both posts and comments. Moreover, discussions on security led to the use of digital
signatures in authorising inter-server requests, adding further to the specifications.

Finally, within our own group, several additional requirements for our system were set in
order to better tailor the user experience towards a university environment. User permissions
and moderation were one important example; much discussion took place within the group
on deciding how to avoid explicit content and ensure the system could not be abused.

Ultimately, we were able to develop a functioning system that met a large majority of these
requirements while following software development methodologies. A scrum framework with
meetings, sprints and continuous integration was initially adopted; as the academic year
progressed, members of the group learned how to work more productively together, and this
framework was further revised with respect to Agile practices.

Further elaboration on how requirements were met, the design choices involved, and the
Scrum/Agile development methodologies involved will be given in later sections.

Development Timeline

This section focuses on the main events that occurred during the development of our system
as well as the federated platform as a whole, and serves to provide context for the following
sections that describe the implementation of the system and the group’s use of Scrum/Agile
methodologies in further detail.

A rough timeline was initially set by the module: The first semester would involve developing
a ‘Minimum Viable Product’ of our system, focusing on the correctness of its core
functionality. Following this, the second semester would involve working towards a more
complete implementation, with additional features and a greater focus on user-friendliness.
Further planning within the module was conducted by students themselves.

The summaries of technical discussions in weekly Scrum meetings can be found alongside
the deliverable, as ‘Meeting Minutes’ documents. It should be noted that towards the end of
the project, summaries stopped being taken as more work focussed on the report and not
technical aspects.

——————————

Before the system began development, initial plans for developing the system were laid out.
System features were explored, organised and prioritised by the group to decide the extent
of functionality that could be included in both the MVP and full implementation. Time was
also taken to consider potential options for the project’s technology stack - tools for the
front-end, back-end, database, and managing the project’s development altogether.

Two supergroup meetings were also held at this stage, mainly to decide a structure for
backend APIs that each group should follow. Very general ‘supergroup requirements’ were
established at this point - primarily the nature of the API itself (RESTful, with data sent in
JSON), as well as the concept of ‘forums’ and ‘subforums’ to organise content.

As development of the system began, members became increasingly familiar with
developing the system, and additional tools that had been previously decided against were
incorporated into the development of the system. Adaptations to the Scrum framework were
made to account for differences when developing in a university environment, allowing
members to work more efficiently. Meanwhile, testing and CI was also implemented to an
extent by configuring the GitLab pipeline to automatically run backend tests.

Ultimately, the initial requirements of users, posts and comments were all implemented in
time, though forums/subforums had to be excluded from the MVP. ‘Inter-server
communication’ was instead achieved by showing multiple instances of our own server could
communicate with each other.

Supergroup meetings were only held sporadically at this point, as teams had to finish
implementing basic features of a discussion forum before they could focus on inter-server
communication. Most changes in the specification were to remove ambiguity from
descriptions in the original specification, such as the ‘type’ of ID fields.

——————————

Over the second semester, the supergroup protocol was rewritten to follow the Swagger
specification. This allowed the protocol to be rendered as interactive documentation with
Swagger UI, and therefore made it easier to understand. It was also moved from a GitHub
gist to an actual repository, allowing all supergroups to directly propose changes.

Meetings to discuss any modifications or extensions to the protocol therefore began to be
held regularly, leading to many developments in the supergroup specifications. Some of the
additional supergroup requirements were beyond what had been initially discussed from the
first semester - such as infinitely nested comments, a voting system, and inter-server
authentication. Because of this, a number of planned features for the final product had to be
removed from the product backlog, including notifications and a mobile site.

Several complications also arose from the introduction of inter-server communication, and
various changes in the system had to be made. Endpoints on the backend were restructured
several times to deal with requests from other servers, and the API itself was modified to
adhere to HATEOAS principles. As a result, iterative development was taken more seriously,
with backend tests changed to run through a proper API development platform.

However, the Scrum and Agile practices adopted by the group allowed the project’s
development to progress relatively smoothly even after these changes in plan, and all of the
supergroup features were able to be properly implemented on time.

Project Details
(180014643)

Overview

Initial specifications distributed by the module coordinator indicated to us to consider a social
media which might have applications in a university setting. The final system certainly fulfils
this criterion, however is to a large extent flexible, offering the capabilities necessary to
realise an online space for a vast array of online communities. The specifics of the system
capabilities can be split into two parts. Firstly there is the super-group communication
protocol which specifies what a server must be able to do in order to correctly interact with
other servers in the federation. This communications protocol is comprehensive but
intentionally minimal, specifying all the behavior one would expect from a functional social
media but not constricting in any sense as to allow groups to implement the functionality they
consider to be important. This specific functionality is the second, more concrete part of the
system’s capabilities. This obviously includes everything specified in the super-group
communication protocol (channels, subchannels, posting, commenting, up/downvoting), but
also features specific to our system, (banning users, admin users, profile pictures).

The platform is organised into forums, which in turn are organised into subforums. Both
forums and subforums are categorised with titles however it is only within subforums that
posts can be made.

Figure 1 - Diagram showing an example of the structure of the system.

Looking at figure 1, forums contain some number of subforums, which contain some number
of posts, which can have some number of comments. Each comment can be replied
recursively, ad infinitum. This structure is universal between all servers in the federation. The
hierarchy of admin overseeing is specific to our implementation.

Technology Stack

Multiple technology stacks were considered for the project, listed in the table below. Overall,
it was decided to use the stack that would be the most optimal given the skills in the team,
so that there would be no time wasted struggling with new languages.

The stack consists of:

● Frontend – React JS, CSS Modules and Sass.
● Backend – Loopback 4 with Typescript.
● Database – MongoDB.
● Management – Clubhouse and Microsoft Teams.
● User authentication – JWT tokens
● Server authentication – Digital certificates in the form of HTTP signatures

The system can be cleanly separated into two parts: a frontend built with React and a
backend built with Loopback4.

React JS was chosen for the front end due to it being the only frontend framework that
someone on the team has experience with, and for it’s flexible and declarative style. The
plan was to keep it simple and not use any of React’s additional frameworks like Redux.
React also has very nice syntax in the form of JSX which combines Javascript and HTML,
and allows the rendering logic to be written alongside the UI logic since the two are tightly
coupled.

For managing CSS, CSS Modules was used to stay in line with React’s component-based
architecture and reduce complexity. Additionally, SASS (CSS extension language) was used,
mostly to keep things simple - SASS provides quality of life features like nested styles.

Loopback 4 was selected for the backend framework. The team had already agreed on
using a Node JS based backend since everyone had some degree of experience with
Javascript, where alternatives required experience with languages not everyone had used.
Loopback 4 was chosen as it is designed for building REST driven APIs, and provided more
structure than a bare bones express application. This emphasis on structure, however,
would come back to bite us, as discussed later in the report. Loopback 4 also uses
Typescript, which the team had assumed would be a benefit during development due to its
type safety.

MongoDB was chosen for the database since it plays well with Javascript (and hence well
with Loopback 4) – objects can be stored directly.

Clubhouse was chosen for tracking the project since it has a better feature set designed for
larger projects, including managing sprints and milestones. There is more on Clubhouse
later in the report.

Microsoft Teams was not considered during early development as a management tool, but it
ended up being used anyway as a platform to communicate and hold meetings.

Technology. Pros and Cons.

Front End.

Bare bones HTML, CSS &
JS

Pros.
● Basic – everyone has used it before.

Cons.
● Too basic – A lot of functionality and quality of life

features that are standard for web projects are
missing.

React JS. Pros.
● It’s a templating language, so it’s great for writing

efficiently, and allows JS to be written directly into the
view.

● Strong tooling support for JSX (React’s hybrid JS with
XML language)

● Huge ecosystem for addons and libraries.
● Reactive – Efficient when it comes to updating content

with XHR operations etc using its Shadow DOM.
Cons.

● Only 1 person in the team has used React before, and
not in a production setting, and there is a bit of
learning curve.

● View oriented – so data management can become an
issue.

Vue JS. Pros.
● Easy to understand, templates are written in HTML.
● No build chain like React.

Cons.
● No-one on the team has used Vue.
● Too flexible for a large-scale project – different styles

could creep in around different parts of the system.

Back End.

Node JS. Pros.
● Language is JS – Majority of the team have

experience in Javascript.
● Fullstack JS.
● Huge ecosystem of libraries, addons and frameworks

(like express).
Cons.

● Dynamically typed – More prone to runtime errors.

Node JS with Typescript. Pros.
● Statically typed – More errors caught before runtime.
● Lots of architecture in place.

Cons.

● Requires a pre-processing step to turn TS into JS.

Express (Node JS
Framework).

Pros.
● All pros of Node JS.
● Widely used - lots of documentation and resources.
● Minimal - Allows flexibility when developing, suitable

for unusual requirements like federations.
Cons.

● All cons of Node JS.
● Unopinionated - Extra effort will be required for

consistency across the team.

Loopback 4 (Node JS
Framework with
Typescript).

Pros.
● All pros of Node JS with Typescript.
● Provides lots of structure - common things like CRON

jobs and interceptors are available.
Cons.

● All cons of Node JS with Typescript.
● Not widely used - less documentation and resources

available.

ASP.NET. Pros.
● Very performant – 5x faster than Node JS.
● Built in security.
● Strongly typed.
● Scales well.

Cons.
● Language is C# - Not part of the St Andrews course

so few on the team know it.
● Involves a build chain – more complicated to release.

Database.

MongoDB. Pros.
● Majority of the team already knows it.
● Flexible storage – MongoDB is schema-less since it’s

a document store.
Cons.

● Inflexible queries – Doesn't support JOINs and the
like.

● Not atomic – Doesn't support transactions.

Postgres. Pros.
● Allows ACID.
● SQL based – majority of the team know SQL.

Cons.
● Uses a schema – which isn’t suitable for a fast-moving

project like this.

Management.

Trello. Pros.
● Simple – Just consists of cards and places to put

them.
Cons.

● Too simple – Missing a lot of features tailored to
software engineering’s requirements.

Clubhouse. Pros.
● Has a more serious feature set, including automatic

burndown charts.
● Has better organisational tools with different levels of

abstraction - cards belong to epics, and epics belong
to milestones.

Cons.
● It’s a bit complicated at first due to how many features

it has.

User authentication

OAuth Pros.
● High level solution, uses already implemented login

functionality of services like Google and Facebook,
delegating actual authentication to these services

● Allows for cross-functionality with server hosting user
accounts (Google, Facebook, etc.), such as fetching
that users photos or friends from that service for
example.

Cons.
● Poor Loopback4 documentation making it difficult to

implement
● Reliance on external services like Google and

Facebook does not align very closely with the
federated system ideology which emphasises
independence and autonomy as much as possible

JSON Web Tokens (JWT) Pros.
● Lightweight and minimalistic, requires no reliance on

third party services.
● Better Loopback4 documentation, including an

example of a loopback application using JWT, usable
as a template for our requirements.

Cons.
● No reliance on third party services means our system

is responsible for all sensitive data and user
information

Server authentication

Central database of users Pros.
● Any user can log in from any instance of the system
● Their login token can also be used as the server

authentication signature, since a foreign server can
consult with the central database to check if the token
sent is valid.

Cons.
● Incompatible with federated ideology, as it leads to a

reliance on a central resource.
● Would require unnecessary supergroup overhead

work

Digital certificates Pros.
● Aligns with federated approach since no centralised

infrastructure required
● Same system as that used by Mastodon, the most

popular and successful federated social media in the
public domain.

● Allows more granular control for individual servers in
the federation, e.g. a server can choose to not
respond to any requests except those on a whitelist of
servers within the federation.

Cons.
● Non-trivial implementation.

Table 1 - A table of the pros and cons of different technologies that could have formed the
tech stack.

React

The react web app is served from its own frontend server which runs independently of the
backend. Decoupling the frontend and backend meant that the overall system was more
robust to failure, as the frontend could handle errors independently to the backend.

React has a modern component based approach, which makes it easy and fast to develop
UI in small chunks. Many reusable components were written during development, and this
led to shorter and shorter development times as the library grew. The components written
are a mix of class and functional components, as at the start of development the benefit of
functional components wasn’t realised - that state can be refactored away from the
component, which can’t be done with class components.

While the initial goal of using React was to keep it simple, as the team became more familiar
with it, more complex features were used. For instance the user context provider, which
gives access to the currently logged in user anywhere in the component tree via wrapping a
component with a React context provider.

CSS

CSS modules are used in conjunction with React components, meaning each component
has its own module, and local styles. Each component is written to be reusable, meaning
that any case specific styling has to be local to that case and not embedded in the used
component. Heavily used components have several styles however, like size and width, in
order to allow the widest use cases. For instance, the same component is used for all the
buttons in the system.

A UI kit called Reakit was used for the frontend, but in contrast to normal UI kits, Reakit
comes completely unstyled. It purely provides accessibility options for interactable elements
like buttons and dropdown. All styling on the frontend is written by the team.

Loopback 4

The LoopBack 4 application runs on node and is written in TypeScript. LoopBack 4 is
designed to make it easy to create CRUD REST APIs. It largely abstracts away the
database it is running on top of, providing only a generic API. The wrapped database is
referred to as a "datasource" in LoopBack terminology.

The backend is divided into two halves: "internal" endpoints which are only used by our
frontend, and "external" endpoints which are those endpoints accessible to other servers in
the supergroup. Internal endpoints which are only accessible to logged in users (e.g. POST
endpoints) use JWT authentication. Some internal endpoints are accessible without logging
in so that users can still view site content without an account.

All external endpoints use asymmetric key cryptography to verify that the server making the
request is legitimate. The PATCH endpoints also check that the editing user is the same as
the original poster, by checking the user-id in the header. It is understood that a malicious
backend could put a fake user-id in the header to illegitimately modify any user's posts.
However, we trust that all of the servers in our whitelist will not do this. If they did then we
would remove them from the whitelist so that they don't have access to our server.

Digital Certificates and Inter-Group Communication

Part way through this project, it was realised that secure communication between servers
within the federation would require an agreed standard method of self-verification which
servers could invoke when sending requests in order to guarantee their identity. The reason
for this was that a HTTP request in itself has no immutable characteristic which can be
guaranteed to uniquely identify its origin. A naïve approach might be to use the ORIGIN
header of the request to determine where a request has come from, however this can be
straightforwardly spoofed, rendering it lackluster evidence of a server's true identity. The
agreed upon solution within the supergroup was to create a digital certificate protocol which
would be sent with every request made by a server. The goal of this protocol was to provide
all servers in the federation with a guarantee that the server a request was being received
from was in fact the server it purported to be, this worked in conjunction with the standard
use of HTTPS, which guarantees that the content of a request has not been tampered with
between being sent and received, to provide a robust and secure basis for inter-server
communication within the federated system of the supergroup.

For one server (server A) to verify the identity of a server (server B) it is receiving a request
from, it is necessary the sent HTTP request contains some sort of immutable “proof” of
server B’s identity. In our system this proof takes the form of a header containing two critical
pieces of information as well as some metadata. The critical pieces of information are the
components of a message string (which can be reconstructed to form this signed message
string), and the message string’s signature. The message’s signature is generated using a
standard, agreed upon algorithm used by all members of the supergroup

(RSASSA-PSS-SHA512). The algorithm takes as input a string and private key and
generates a signature which can then be verified by a third party possessing the
corresponding public key.

A Loopback component called an Interceptor is used to handle foreign server certification.
As the name suggests, interceptors can be used to “intercept” data being passed from one
part of the system to the other. They can then perform any checking or modifying of the data
required before passing the data to its intended destination. An example of how a HTTP
signature certificate is created can be found in Appendix 1. Below is a diagram representing
the process of server certification.

Figure 2 - Diagram showing the execution flow of the server authentication interceptor.

User authentication using JWT

Implementation of user instances within the system proved initially to be a surprisingly
challenging aspect to realise. By the time it came to implementing users it had already been
established that the documentation provided for Loopback 4 could be oftentimes unwieldy,
verbose and unhelpfully put together. This, combined with the fact that documentation and
forum posts regarding the depreciated Loopback 2 and 3 frameworks often appeared
haphazardly muddled in with search results for queries regarding Loopback 4 established a
dichotomy in implementing system features whereby either the feature’s implementation
would be straightforward and work roughly as expected within a couple of attempts or it
would become the bane of several members of the group for a prolonged period, often
stretching over the course of several sprints. Such was the case with the implementation of
users in the system. A (perhaps naive) commitment to doing things “the Loopback way”
meant it wasn’t until a somewhat obscure example of a Loopback 4 application with basic
user functionality implemented using JWTs was found that real progress on this aspect of the
system could be made. The source code from this example, combined with the array of

disparate knowledge on Loopback 4’s authorisation system gathered previously, meant it
finally became possible to achieve a working user authentication system.

Implementing JWT authentication proved to be a surprisingly non-trivial feat. The various
difficulties encountered in its implementation showcased a microcosm of issues with
Loopback 4 which are discussed in more depth in the Evaluation section of this report.

MongoDB

MongoDB is a NoSQL document oriented DBMS which stores data as BSON or "binary
JSON". This is similar to ordinary JSON apart from the fact that boolean and numeric types
are represented in binary instead of a text representation in order to save space. Our use of
LoopBack meant we did not make API calls directly to the MongoDB driver within our
application. We used mongodump and mongorestore to share data with each and easily
upload it to the host server. This was useful as our schema was frequently changing so we
needed to continuously update our local databases in order for the backend to work.

An alternative database system - MariaDB - was considered halfway through development,
due to the heavy reliance on relations the current system had developed. MariaDB is a
MySQL relational database system which stores data according to a strict schema.
Eventually the decision was made not to use MariaDB, as all database API calls were done
through the Loopback 4 interface and this would not change no matter what database
system we used.

GitLab, nginx and running on the host servers

We used gitlab as required as the central repository for all our code. We also used gitlab
runners which allowed us to automatically run integrated tests on pushed change.
Debugging issues with the runner was difficult because it is somewhat of a black box. Its
environment only exists temporarily, and all it can do is run the CI script, it can't be debugged
from the command line. Every time a change was made to the CI script, testing it required
waiting for the container to spin up, which took tens of seconds. We opted not to use CD
because we found that deploying on the host server often required tweaking the code and so
it was best to deploy changes manually and then thoroughly check that everything was
working. The code may pass the runner tests and yet still not work on the host machines due
to issues with things like .env files, port numbers, and nginx configurations. Furthermore, we
were not regularly testing against other implementations until the end of the year and so it
was not necessary to always have the most up to date version of our system running on the
host servers

We used nginx to serve our frontend and backend on the same port. There was no choice
but to use nginx since that is what the school host servers run on. nginx did not cause us too
much trouble because some group members were already familiar with writing nginx.conf
files.

Initially we didn't know how to get MongoDB to run on the host server because it is not
installed on school systems and the usual way to install it requires root permissions. After
asking fixit for help, Stuart Norcross sent us a helpful email guiding us through the process,

which we forwarded to another group that we knew were using MongoDB as well. He also
explained how each group has a sudo user, which is something that we were not informed
about during lectures.

Features

A social network by definition has to have users, user authored content and means to allow
users to express opinions about said content. The following sections look at the features
implemented as part of our system. Both the features implemented on a supergroup-wide
level (i.e. those supported by all servers in the federation) and features implemented
independently on our system instance are discussed. A brief discussion of features which
were originally considered for implementation but were not included in the final system
follows this.

Supergroup features

These features were implemented by every group within the federation. A systematic list of
these features was standardised as an API protocol. For the most part, these features
coincide closely with the system functionality outlined in the original specifications from the
project.

Aspect of system Feature Explanation

Posting Create, edit, and
delete posts to any
subforum in the
federation

The most basic feature for a social network
is being able to author and view content.
Editing and deleting provide a quality of life
feature that improves user control, by
allowing them to correct mistakes. Several
systems in the federation (including ours)
support markdown in the body of posts.

Upvote and
downvote posts

A common part of any social media is an
abstract way to indicate
approval/disapproval of something. The
supergroup uses upvoting and downvoting a
la reddit. Allows servers to implement post
aggregation systems if they wish to which
will be able to aggregate posts made to and
from any part of the federation.

General Server certification Servers must be able to recognise requests
from other servers in the specification. This
is achieved using digital certification and
asymmetric key cryptography.

Security and privacy for a social network is
important for users to feel comfortable using
the site. Having digital signatures for
inter-server requests allow federations to
restrict what can access their users
information. Servers can control access to

their system by only considering requests
from a whitelisted set of servers.

Fetching content
from other federated
instances.

The core mechanism for a federated content
system.

Due to the nature of federated content, all
data must not assume locality of reference.
That means that each piece of data is
accompanied by an array of full URLs to
navigate request related data (HATEOAS).
The frontend uses these links via a relay in
the backend to securely make requests to
other servers. A relay was required as the
frontend is incapable of creating digital
signatures.

Commenting Create, edit, and
delete comments on
any post made by
any user within the
federation

Another basic feature of most social media,
facilitates conversations and discussion of
ideas.

Commenting
recursively on posts

Most social media will allow some level of
nestedness within comments. Within the
supergroup, it was agreed to support a
reddit-style system where comments can be
infinitely nested.

Upvote and
downvote comments

Similar to upvoting and downvoting posts.

Users A signup and login
system to populate
systems with users

In our system, JWT (JSON Web Tokens) are
used. Hashes of passwords are stored in
the system’s backend to keep user
credentials secure.

Get information
about an arbitrary
user

Another common aspect of most social
media is some sort of profile page for users.
To allow instances from any part of the
federation to display informative user pages,
it was necessary to have a set way of
fetching user information. This included a
user’s username and a list of all posts they
had made on their native instance within the
federation. Some instances (such as ours)
also have support for profile pictures in the
forms of URLs.

Hierarchy Structure of system
into forums and
subforums

Each instance within the federation consists
of some number of forums, each of which
contains some number of subforums. It is
within these subforums (and not within
forums) that posts can be created.

Table 2 - List of features that were required by the supergroup.

Extended features

On top of the functionality outlined above, our system also supported several extended
pieces of functionality. These are outlined below.

Aspect of system Feature Explanation

Posting/commenting Embedding content
within posts and
comments

Posts can include more than just text.
Images can be attached via URL and videos
can be attached via Youtube URL.

Authorization System of
authorization to
ensure that certain
actions can only be
made by privileged
users or owners of
content

There are two types of privileged user:
server admin and forum admin. Forum
admins have the role of moderating content
and they can delete posts or ban users from
a forum if they deem content to be
inappropriates. Server admins have forum
admin privileges across all forums and they
are also able to ban users entirely from
logging in to the server. Posts and
comments can only be edited and deleted
by either the original creator of the
post/comment or an admin with the relevant
scope.

Users Editable profile
pictures,
descriptions and
“cake days”

Part of the supergroup protocol but not
required to be supported by all groups, our
system supports users setting profile
pictures, descriptions as part of their profile,
and by recording the time at which their
account was created, a “cake day” (a la
reddit) a cake day was generated for users
within our instance.

Hierarchy Dynamically create
new forums and
subforums

Users are able to create new forums on the
server and (within forums on the local
instance) create new subforums too

Table 3 - List of features that were implemented in addition to the supergroup features.

Extension features proposed but not implemented

Over the course of the two semesters spent working on the project there were several
features considered for implementation but which in the end were not implemented. Some of
these features were decided to simply be beyond the scope of the project (instant
messaging) while others would have been good inclusions to the project however their
implementation either wasn’t feasible due to time constraints or would have required a large
amount of time to be set aside for only a small gain (e.g. uploading profile images would
provide advantages however simply using URLs was far more straightforward to implement
and offered almost exactly the same functionality).

Feature Reason for not implementing

Not implemented

A direct messaging system
using websockets.

Having an instant messenger feature is common on social
media networks (Facebook, Instagram and LinkedIn for
instance).

However, since this requires two way communication
between the frontend and backend, websockets would be
required - and the project has no foundation for
implementing such a feature in the time provided.

The ability to upload
photos.

Having a mechanism to upload resources like photos would
have multiple benefits across the system, from uploading
photos for posts to upload custom profile pictures.

It was decided not to implement this feature, as the existing
technique of just providing a URL to an image already on
the internet was deemed sufficient for use for photos in
posts and comments, as well as profile pictures.

Pinning posts. Being able to pin a post to the top of a subforum is a useful
feature seen in a lot of social media networks like
Facebook. It allows users to draw attention to subforum
rules or FAQs.

It was decided not to implement this feature as it is
deceptively complex. The backend would have to still serve
the regular subforum to foreign servers, but a special
subforum to the frontend, and the effort required to
implement it was too much compared to the gain the
feature would bring.

Subscribing to forums /
subforums and aggregating
that into a central feed (like
reddit).

Allowing a user to create their own aggregate feed by
subscribing to forums / subforums is a feature seen in
social media networks like Facebook and Reddit. It allows
user control in what they see.

The reason this feature wasn’t implemented was simply
time. However, it was popular among the team and would
likely be the first to be implemented given more time.

Push notifications As with instant messaging, this would require looking into
an additional way for frontend and backend to communicate
(specifically using the javascript Push API). This feature
was considered to provide minimal functionality, and it was
decided time would be better used implementing and
improving more important features.

Mobile site Most social media platforms also provide a mobile site for
viewing on non-desktop devices. This would be a good
feature to have implemented. However as with
subscriptions, time simply didn’t permit its inclusion.

Implemented but later removed

Post & comment
pagination.

Only loading a certain amount of data (posts and
comments) at a time reduces the load on the frontend and
backend, and would be a required feature in order to allow
the network to scale.

This feature was actually implemented for posts, however
due to decisions in the supergroup that impaired its
functionality, the feature was reduced back to a “load more”
button at the bottom of the post feed. An outdated version
of the codebase which supports pagination can be found in
the “updated-interceptors” branch.

Table 4 - List of features considered, but not implemented, or removed.

Changes in Plan

One change from previous deliverables was going back on the plan to switch from MongoDB
to MariaDB. One reason for this is that the way we store the newly implemented ‘likes’
system is non-relational, as the users who have ‘liked’ a post are stored as an embedded
array. The advantages of switching to MariaDB were also diminished by LoopBack's
limitations. For example, in LoopBack it is impossible to have a compound primary key.
Using a table with a primary key that is a compound of two foreign keys is the relational way
to model a many-to-many relationship.

Another mechanism that evolved constantly over the lifetime of the project was how the
server would communicate with foreign servers, as can be seen in figure 3. As the
implementations of inter-server communication continued to develop, various complications
arose with currently existing systems and the mechanism was ultimately rewritten several
times.

Initially, there was the dispatch controller, which the frontend queried, providing the server ID
and other relevant IDs in the URL, and the backend would trigger a redirect to the
appropriate server. This approach meant that each piece of data on the frontend had to be
tagged with the server ID it belonged to. Since the type of query was hard coded into the
URL (/servers/{:id}/posts/{:id} etc), every external endpoint (the ones part of the
protocol) had to have an equivalent internal one. This leads to many issues, like server
authentication headers later on, and a lot of redundant code. The next evolution was the
local-foreign controller, which instead of triggering a redirect, made the request directly. The
local-foreign controller still relied on server IDs and hard coded internal endpoints. As the
project developed, the huge flaw was discovered in using server IDs (discussed earlier). This
prompted the final iteration - the relay controller, which behaves similar to the local-foreign
controller by making a request for the frontend, except this time it uses the link provided by
the frontend as the target URL, completely removing the need for server IDs. It only exposes
4 generic relay endpoints, for get, post, patch and delete - while it could all be done with one,
it was split into request types for readability on the frontend.

The new design not only cut down on the amount of code but also better conforms to the
HATEOAS principles the supergroup API is built on. This means that if the URL structure
were to change in future we could adapt our code (backend and frontend alike) much more
easily.

Figure 3 - Diagrams showing the dispatch, local-foreign and relay controllers as they deal
with requests from the frontend.

Testing Summary
(180002209)

Testing is an essential part of developing any robust system. We made use of a variety of
methodologies and techniques to rigorously test our system. This helped us to more easily
manage the development and management of features during development and also gave
us confidence in the robustness of our system after completion.

Backend

Methodology

The system’s backend was comprehensively tested using an “end-to-end” approach. This is
a testing approach which abstracts over the entity being tested, treating it as a “black box”
similar to how a user generally treats a system. “End-to-end” testing involves testing the
system comprehensively, as a whole, rather than as individual modular parts, this provides
several advantages to other methods of testing.

- Component integration: For the system to comprehensively behave correctly as a
unified whole, each part must also work as expected individually, therefore multiple
aspects of the system can be tested simultaneously, and the same test can also test
that these aspects not only behave in isolation but also integrate with each other
correctly.

- Simulate user interaction: End-to-end tests are generally based around simulating
user input (or in our case, simulating front end requests to the backend), this
minimises the risk of a disconnect between what a developer may consider it
important to test and how users may actually interact with the system, since in this
scenario, they are ideally as close to one and the same as the developer can
achieve.

- Easy to modify: Aided by the supergroup system protocol, tests could be written
agnostic of implementation, meaning internal changes to the system “black box”
require only minimal (if any) modification to the relevant tests.

To systematize this methodology, the testing application Postman was used. Postman is an
API testing platform which facilitates the efficient creation of such tests by providing an easy
to use and efficient UI and set of tools (environment variables, exporting of tests as JSON,
team collaboration tools, etc.). These tests could then be run as part of the Gitlab pipeline
using an npm package called Newman.

Postman tests are based around sending requests. The aspects of a request (the method,
body, header, and target) can all be set and tweaked and the response can be analysed
using concise Javascript scripts which can evaluate whether the response meets certain
requirements (e.g. response had code 200, contained a field called “postTitle” equal to “new
post”, etc.). Postman also supports environment variables which were used to build more
complicated chains of requests (e.g. one request can send a GET request to fetch a post
and then the response’s “postId” field can be saved as an environment variable for use
performing a POST comment request to comment on that same post).

To more easily manage these tests, they were split into several groups, each more or less
focusing on a specific aspect of the system. Below a brief description of what was tested
within each of these groups. A comprehensive and detailed explanation of every backend
test written can be found in the spreadsheet attached as part of this deliverable (Testing
spreadsheet.xlsx)

Authentication, Navigation and Basic Use

These tests concerned the basic use of the system from the perspective of a user wishing to
log in and interact with the system. Functionality such as signing up, signing in, making
posts, and getting posts, (and doing the same for comments) is all considered in this section,
as well as things like editing and deleting posts.

Inter-Server Certification

These tests were concerned with the protocol used between servers to verify one and other
via digital certificates. This involved checking that the backend exclusively accepted valid
certificates but no others. These tests check that invalid signatures are appropriately
rejected and valid ones allowed through to the rest of the system.

Voting

These tests verified that the upvoting behaviour worked as it should. There were two aspects
to this; a “micro” level, consisting of checking that vote requests from a single user worked
as they should (e.g. user can’t upvote twice, a user downvoting a post they have already
upvoted decrements the total by 2 not just 1), and a “macro” level, testing that votes from a
multitude of users were correctly recorded. These tests required some slightly awkward
Postman maneuvers, for example creating the set of users for the “macro” tests required
building a for-loop by continuously setting a request to fire again, decrementing an
environment variable each time until said variable hit a certain threshold. Although it was
inconvenient such features weren’t more readily accessible through Postman, the
workarounds found were still rigorous and reliable in their behaviour.

Authorization

These tests verified that authorization mechanisms worked correctly at both the server and
forum levels. It tested that a privileged user is able to ban people at either the forum level or
the server level, and that these bans have the expected effects with the appropriate scope.

Frontend

The original goal for testing React components was to verify that their internal state was
behaving as expected. However, the mainstream testing methodology (and as a result
testing tools) are geared towards testing from a user perspective. Testing from a user
perspective means it’s difficult to test internal state since the user doesn’t have access to
said state.

After debating the effectiveness of this approach of testing, it was decided that the team
wouldn't use it and little frontend (automated) testing would be done as it is in general not
appropriate for the functionality expected of the frontend. Instead, lots of manual testing from
the devs and other users was carried out continuously during development.

That being said there are still automated tests for the plain Javascript end of the frontend,
just not for components and their trees.

Continuous Integration (CI)

Tests were run upon commit to the Gitlab repo via a straightforward continuous integration
pipeline. As mentioned earlier, the npm module newman was used to run the written
Postman tests within the CI docker.The CI pipeline effectively performed the same steps as
a member of the group would do when running the Postman tests locally by setting the .env
variable “TESTING” to “TRUE” (More information regarding this can be found in Appendix 2).
Since the pipeline would instantiate a new Docker instance whenever it was run and build
the program from scratch, it removed any chance of strange behaviour which sometimes
occurred when recompiling the system on top of an already compiled codebase. It also
eschewed issues resulting from leftover database content, such as more than one server
being in the Server collection, which can cause the tests to fail.

Although testing APIs, or web applications in general was not something members of the
group had prior experience with, the testing approach taken proved to be a powerful,
comprehensive, and intuitive one.

Software Development Methodology
(180012847)

Tools

Work had to be done remotely due to the current pandemic situation, so all tools had to have
asynchronous distributed interfaces, since in most cases team members would be working in
different locations at different times. Working remotely places additional restrictions on how
the team collaborates, as being physically present allows spontaneous building of rapport
(Shneiderman et al. p. 392).

For planning and directing sprints, an online development-tracking and management tool
called Clubhouse was used. It provides a system for managing project tasks and gauging
development progress through organising and tracking the progress on stories. Apart from
assigning stories priority levels and ‘story points’, they can additionally be arranged into
different levels of abstractions, with a group of stories making an epic, and a group of epics
making a milestone. However, as discussed in the evaluation, Clubhouse ended up being
primarily used as a product backlog.

Meanwhile, Microsoft Teams was used by both the group and supergroup to host meetings
and facilitate communication. Teams was also used to store some important documents
during development as it came with a built-in Microsoft Word processor, though alternatives
such as Google Docs were eventually used due to versioning and collaboration issues that
were found with Teams.

Finally, Git and GitLab were used for source control, as required by the project specification.
Unfortunately, no-one on the team had experience with GitLab, so some additional time was
required to get used to its features. Additionally, several issues were encountered with
GitLab - a SOCKS4 proxy was required to access it outside the university network, and the
university’s restrictions placed on the group repository also made it difficult to set up any
CI/CD pipelines, as discussed later in the evaluation.

Use of Agile + Scrum

Throughout the development of the project, the Scrum framework was used to prioritise the
requirements of the system and establish regular communication between group members.
This was to ensure that everyone was informed about the state of the system and had clear,
focused tasks to perform. As the project progressed and sprint retrospectives were
performed, various changes were made to this framework with respect to the aims of Agile
practices, ultimately allowing team members to work more productively together.

——————————

The first Scrum meeting was used to plan out various aspects of the methodology that
members would follow. It was initially decided to hold scrum meetings (and therefore begin a

new sprint cycle) once every several weeks with regular, scheduled stand-up meetings held
in between, so that members could raise any complications during sprints and receive help.

Moreover, tools were decided upon in order to help with outline planning. One important
decision was to use the Clubhouse app to build up and maintain a product backlog; as more
scenarios and user stories were collected, further meetings then elaborated on the specifics
of how this app would be used. This included organising user stories into backend/frontend
categories, assigning them one of 4 priority levels based on necessity and relevance to the
MVP, as well as the use of a ‘difficulty index’ to indicate our estimated time for their
implementation.

Sprint retrospectives at this time mainly noted difficulties with finding a meeting time that
everyone was capable of attending, and so it was suggested to assign someone as Scrum
Master to organise meeting times, while holding members accountable to important
responsibilities.

——————————

After a majority of the outline planning had been done and development began, the following
scrum meetings were used to plan sprints for building an MVP, based on the user stories
organised in the product backlog. The organisation of tasks and assignment of priority levels
were extremely helpful in directing each sprint; as the system expanded in complexity,
members were able to focus entirely on developing the front-end or back-end separately,
while still having a good grasp on the overall state of the project.

Smaller stand-up meetings held between sprints were very helpful in clearing up confusions
about interactions between the front and back-end, such as the existing API endpoints or
property names of JSON objects returned by the API. The meetings were also used as an
opportunity to properly discuss how to merge different branches of the GitLab repository,
ensuring that new feature implementations did not conflict with each other.

The stand-up meetings also helped facilitate regular communication between the group. This
was particularly important when a major issue was encountered during the implementation of
user authentication, where the relevant Loopback documentation was very limited. Multiple
members of the team worked together to research potential solutions, and while the product
backlog had to be changed to exclude forums and subforums, the issue was resolved over
the following sprints without greatly affecting any other aspect of the project’s development.

Continuous integration was additionally implemented at this point, with a GitLab runner
configured to run end-to-end acceptance tests for the backend after each commit. This
ensured the product was always in a stable, working state throughout development, and was
very useful in helping members quickly solve bugs in current features, so that they could
stay focused on implementing new features in future sprints.

During the development of the MVP, these development processes continued to be reflected
upon, and the group decided to make several changes to the previously designed Scrum
framework. With reference to the Agile practice of prioritising ‘individuals + interactions’ over
rigid processes, it was thought that rather than following the framework exactly as planned, a

better option would be to adapt our approach and account for the differences with
developing in a university environment.

One major change was shortening sprint times to a single week due to the limited time
available to develop the project. Longer sprint times carried a greater risk of falling behind
schedule, as there would be fewer Scrum meetings; members would therefore have fewer
opportunities to reflect on the amount of progress achieved with respect to the deadline, and
make adjustments to future sprints as necessary.

Another change was the development of the product backlog itself. While the current system
of prioritisation and organisation were helpful, the ‘difficulty index’ on tasks was excluded as
they were often irrelevant; team members could have other responsibilities during sprints,
meaning the time they could dedicate to the project was unpredictable. More focus was
directed in upholding regular communication instead, so that members struggling with sprint
tasks could receive help from others.

Finally, the designation of a Scrum Master was found to be unnecessary due to the small
group size. It was found that the responsibilities of organising a scrum were simple enough
to be covered by any member of the team whenever convenient, and enough trust and
understanding had been established between members for tasks to be completed without
the explicit need for accountability.

——————————

Over the second semester, scrum meetings continued to be held at a fixed time every week.
Having finished a majority of the outline planning, these events began to follow a much more
regular structure aimed at upholding an Agile workflow: Facilitating communication to resolve
issues, revisiting or clarifying requirements, and assigning responsibilities for the next sprint.

The product backlog was updated throughout to reflect the app’s development as well.
Responsibilities for new features were discussed during scrums, and members were able to
choose which new features they wanted to implement over the next sprint, with proper
consideration of their priority and difficulty. This was very helpful in keeping members
focused on their part in developing the app.

On the other hand, stand-ups between scrums began to be held irregularly, rather than
following a strict schedule; emphasis was placed on the Agile practice of working with our
individual circumstances over establishing a rigid meeting time for all discussions. This gave
members a convenient way of receiving assistance and suggestions from other members
when stuck on a particular task, such as deciding how user roles and permissions should be
stored in the database. The development process was therefore very open to change, and
difficulties with feature implementations were resolved much quicker than otherwise.

Furthermore, since most groups had finished basic forum implementations and could focus
more on inter-server features, developments in supergroup discussions began to occur more
often. As a result, the flexibility of these meetings were also critical in responding to the
constant changes in the supergroup’s API protocol. On several occasions, members of the
group met immediately after supergroup meetings to redefine the requirements for our
backend when the protocol was updated - often regarding inter-server authentication

methods and the common API endpoints. This followed the Agile practices of evolving
quickly to meet new standards, and overall greatly reduced the time spent developing
towards an outdated specification, allowing the team to work more productively.

One such instance where this occurred was the removal of pagination-related endpoints
from the supergroup protocol. Discussions regarding how this feature could be adapted were
able to take place soon afterward, and an alternative client-side ‘load more’ button was
implemented over the same sprint, with no further disruption caused from this event.

Finally, pair programming began to be utilised by members of the group - this process was
particularly efficient in the process of fixing bugs, as multiple people could suggest ideas and
error-check any written code, while gaining a better overall understanding of the system. In
fact, a new ‘Code With Me’ feature of the WebStorm IDE was also found to be very helpful in
solving larger issues. This tool allowed multiple people to access a person’s computer and
make changes to the files together; members would get instant feedback on whether their
changes conflicted with each other, and the code could also be run in the middle, allowing
bugs to be found and resolved together.

——————————

Overall, the overarching ideas of Agile and Scrum were used to significant effect.
Throughout development, members of the team had clearly assigned responsibilities every
sprint to focus on, and Scrum meetings were good opportunities for everyone to catch up on
the current state of the project and the responsibilities of other members.

Frequent communication during sprints and the iterative approach to development reduced
the impact of unstable requirements or unexpected difficulties on workflows, especially
during the second semester, as members were able to find solutions to their issues faster.
By following Scrum and Agile methodologies with an emphasis on organisation, coordination
and frequent communication, the team was able to work much more productively together.

Supergroup Interaction
(180014477)

Supergroup communication was not great during the first semester. Some groups did not
attend the majority of meetings during the first semester which made it hard to agree on
anything. The initial version of the API was almost entirely designed and written by Samuel
Wykes alone. All edits had to be made by him because he had sole ownership of the API
specification document, which was stored in a GitHub gist.

In the second semester the supergroup came up with a better solution to make it easier for
others to contribute to the protocol. We set up a GitHub where each group could have one or
two members who were added to the repo and could therefore propose changes via pull
requests. The permissions on the repository were set up so that 5 members had to approve
a pull request for it to be merged, and only one person per group was to approve each
request. This way we ensured that changes and additions had a good consensus behind
them before they were made official. It also meant that multiple people had to check over
changes before they were approved which helped iron out silly mistakes. The API spec,
which had been written in a JSON-like format, was translated to an open-api YAML
document. This made it easier to put more specific information for each request type,
although it also made the document a bit more verbose. It was frustrating that we had to use
the third party service of GitHub rather than being able to set up a GitLab for the supergroup,
since our main codebases had to be on GitLab anyway. We were forced to do it this way
because the school does not give students the permission to create their own GitLab
repositories.

By the end of the year there was a healthy amount of continuous discussion between each
group. A spreadsheet was made in the supergroup Teams to keep track of the level of
functionality that each group had implemented. After digital signatures were implemented,
groups began testing against each other regularly. Group members would message each
other on Teams to notify them of compatibility issues and we would work together sharing
logs to aid in debugging. Overall there was a good level of collaboration between groups
which allowed everyone to iron out issues well in advance of the deadline.

Evaluation
(180012847)

During the two semesters spent working on this project, a system was developed to
comprehensively meet the criteria set out through the different deliverables distributed
throughout the year. Part of this process involved communication with the supergroup to
develop a systematised version of this functionality in the form of the supergroup protocol.
The system also incorporated local extended functionality, such locally tailored functionality
being a characteristic aspect of federated systems. Said functionality was implemented to a
high degree of polish and tested as robustly as the fundamental aspects of the system.

Comparison to real-world technologies

Our system’s implementation drew inspiration most heavily from two real-world social media
platforms: Reddit and Mastodon. Mentioned explicitly by Edwin in the first deliverable
specification for this module, Reddit provided the abstract notion for what our system should
look like in the broad strokes.The obvious parallels being between subforums and
subreddits, upvoting and downvoting is also inspired by reddit and the system’s deeply
nested comments are also a staple of reddit threads. Other less major aspects, such as the
minimal user profiles and “cake days” were also inspired by Reddit.

While reddit provided much inspiration for the structure and functionality of our system, with
regards to how federation could be achieved, Mastodon provided an illuminating case study.
The most valuable thing Mastodon provided was a template for implementing secure
supergroup communication via the use of digital certification. The method of certification
used by Mastodon itself seems to be based heavily on an approach outlined by the Internet
Engineering Task force (IETF) for HTTP signatures (M. Cavage et al) This approach became
the backbone for our chosen method for secure inter-server communication within the
project.

Backend

With hindsight LoopBack 4 was not a good choice for the backend. It had a number of
downsides which were detrimental to development.

One of the biggest issues with LoopBack was its poor documentation. Example code was
often incomplete or outdated, while several documentation pages led straight to GitHub
issues. LoopBack 4 is relatively new and not backwards compatible with LoopBack 3, so it
doesn't have some of LoopBack 3's features. It was sometimes hard to find out how to
idiomatically implement a certain feature in LoopBack 4, whereas searching brought up
documentation for how it would have been done in LoopBack 3. Additionally, a lot of the
documentation and example code was about how to migrate from LoopBack 3 to LoopBack
4, which was not helpful or easy to understand for a team that never used either before.
Searching for how to implement a feature often lead to GitHub issues describing proposed
additions to LoopBack 4 rather than documentation or Stack Overflow answers describing
how to solve the problem, as you would find for a more popular framework like Express.

One way we mitigated the lack of documentation is that one member of the group joined the
LoopBack 4 official slack group to ask for help with a specific problem, which one of the
slack members gave a helpful answer for. This was a good resource to have when we were
completely stuck on a backend issue.

LoopBack recommends that you use their command line interface to auto-generate code.
This perhaps indicates that their framework is bloated with boilerplate. It worsened the
learning curve at the start of development because we generated the barebones of the
application through the CLI, and then none of the team members understood the code,
because none of us had written it ourselves.

We used TypeScript, which LoopBack 4 has first class support for. This meant that the
application had a long compile stage every time the code was changed. The advantage of
TypeScript over JavaScript is that it is supposed to catch silly errors at compile time (such as
type errors, misnaming variables, objects being undefined). However, LoopBack has a very
soft-coded system for gluing together different parts of the application. Classes are
referenced by string literals, which aren't statically checked, and a slow, complicated
dependency injection process happens at runtime. The error messages generated when
dependency injection goes wrong are long and obtuse, and normally describe an error
happening within code generated by LoopBack rather than source code.

The disadvantage of TypeScript (a long build time) was retained, while its advantage
(screening out silly mistakes) was not. Additionally, TypeScript is only transpiled to
equivalent Javascript, and does not provide any performance benefit, whereas a truly
compiled language can perform many compile time optimisations and have a smaller
runtime overhead (e.g. no runtime type checks).

LoopBack abstracts over the particular database used, but by doing this it also hides
important functionality specific to each DBMS, providing only a generic CRUD API. At the
same time, it doesn't fully abstract away the details of which database is chosen, because
each datasource has certain features it supports and doesn't support, and there are some
odd quirks to this which require digging through documentation to identify.

One of the main advantages of Node over other web servers is that because the backend
and frontend use the same language, code can be shared between them, and it is less
mentally taxing to alternate between developing each part of the system. This proved not to
be too relevant to our project due to a strong separation of concerns between the frontend
and the backend. One our project usually different people would be working on the frontend
and backend, and features would first be added to the backend and then later supported by
the frontend, so one person was not usually developing both at the exact same time. No
code was shared between frontend and backend. The backend used TypeScript and the
frontend used JSX. Both these languages are based on Javascript but they are somewhat
different to each other. With this in mind, we could have used C# (one of the initially
proposed languages) instead of Node and reaped the benefits of a more performant
compiled language.

Alternatively if we were to stick with Node then we would use Express rather than LoopBack
4 as the amount of documentation and tutorials available for Express is much greater.

The REST API developed by the supergroup is quite long and repetitive. If we were to redo
the project we would advocate for the supergroup to use a GraphQL API rather than a REST
API. This would allow for more work to be delegated to libraries/drivers and reduce the
amount of code in our applications, as with a REST API you need some code for every
endpoint. A GraphQL API is really a query language that allows the requester to ask for data
in the shape it expects, which would allow for more flexible federations. When we were
adding query parameters to certain endpoints we were uncertain of what syntax to use.
LoopBack itself supports two different syntaxes for query parameters, one of which is
embedded JSON is the URL. In the end, for simplicity's sake, we did not suggest using the
LoopBack syntaxes to the supergroup because they were too complicated. In GraphQL
there would only be one way to write queries with filters, which would simplify the process of
suggesting and agreeing on protocol with the rest of the supergroup.

MongoDB was also a poor choice with hindsight. Our data ended up conforming to a
relational model more than initially expected, which is a common issue when choosing to
use a NoSQL database for a project of this kind (Mei).

Frontend

React proved to be a good choice for the frontend. Some of the group members already had
experience with it and those who didn't were able to get to grips with it much more easily
than with LoopBack due to the abundance of documentation and online resources. As the
project matured, the collection of bespoke reusable components grew, making it easier to
quickly compose new components from old ones. React’s own JSX language made UI
design and logic very easy to write as they were alongside each other instead of seperated.
It’s quick compile time and development mode (recompiles on changes to the codebase)
made iteration fast and efficient.

React isn’t without faults however. One of the main issues encountered when using React is
how it handles data. Data only moves down the component tree, not up. So communicating
information from one component to another could at times become an arduous design task,
involving restructuring and rewriting many components in between. An option to deal with
this kind of state management would be to use a library like Redux or MobX, which provide
ways to manage all kinds of state, like global and nested. However, these libraries are large
and difficult to use properly. The team would have to invest time in taking some training
beforehand to gain the benefits of using a library like these.

CSS Modules also turned out to be a good pairing for React. It’s concept of writing CSS in
modules meant that each component could get it’s own module, and hence locally scoped
styles that would never clash. Using Sass with CSS Modules also proved to be a good
choice, as one risk with using CSS modules is that there is a lot of repetition - but Sass
introduces a system for inheritance of CSS styles and avoids this issue.

The frontend interface was evaluated against Nielsen's 10 Heuristics (Nielsen).

The frontend developed for the project is sleek, consistent and transparent - which are all
tenets to good Human Computer Interaction heuristics. The interface is sleek as it only
displays the information currently relevant to the user, and does so with a minimalistic

aesthetic. It uses bold blue colours to indicate a significant element to the user, and a vibrant
red to indicate an element which deletes something. The interface is consistent thanks to
Reacts component architecture. A post looks and behaves the same on the feed page as it
does in the profile page. Loading behaviour is consistent across the whole app. The
interface is transparent, as it keeps the user informed to its internal state due to heavy use of
reactive information elements. Whether it’s loading content, or if it’s hit an error, it will let the
user know.

What the interface fails at is error prevention, flexibility and error recovery. It fails at error
prevention because interaction with destructive consequences has to confirm dialogue. For
instance, deleting a server in the admin page has no confirmation before the server is
removed. This means the user feels less confident in using the system. Sites like Instagram
have confirmations before every destructive action, which results in less user error. The
interface fails at flexibility because there is none - no preferences, no keyboard shortcuts
and no experience tailoring. Social media sites like Facebook have keyboard shortcuts (ref)
which allow experienced users to use the system more freely, and preferences like dark
mode. Additionally, there is no mobile site version of the site, meaning users can’t access
the app on the go. This severely restricts the usability of a social network. The interface fails
at error recovery, as even though errors are shown to the user, they are rarely in a
user-friendly form. They tend to be error codes that only make sense to a developer and not
a user. This means cannot correct any underlying error (if it were even possible for them to
do).

Agile & Scrum

Various Agile practices were incorporated with our adapted Scrum framework. As the system
expanded in complexity, communication, organisation and flexibility became increasingly
important, and our use of these software development methodologies contributed
significantly to our success, detailed below.

Increasing the regularity of scrum meetings was likely an important contributing factor. These
meetings allowed us to further adapt our use of Scrum and evaluate our rate of progress
more often, ensuring that we did not fall behind schedule. It also instilled in group members
the value of frequent communication early on, and made everyone familiar with using
Microsoft Teams to collaborate. Pair programming also happened as a result on several
occasions, leading to some very productive debugging sessions.

During the second semester, our decision to increase the flexibility in meetings between
sprints was another useful change. This took advantage of our small group size and
familiarity with one another from the previous semester, allowing us to quickly adapt to
changing requirements within the supergroup; even larger changes such as the removal of
pagination in the backend could be solved within the same sprint.

Incorporating Agile practices related to incremental development were also very helpful
during development. The implementation of automated tests ensured that the product
backend was always in a functioning state, and greatly reduced the amount of time taken to
find bugs in the system whenever changes were made; any errors in the system would

https://www.facebook.com/help/156151771119453

almost always be relatively new and therefore quick to fix, and so members of the team
could therefore focus more on writing new code rather than fixing old code.

However, there were also several areas of Scrum and Agile that could have been
reconsidered.

One aspect was our choice of Clubhouse for managing all aspects of development (deciding
sprints, timeline estimations and holding feature discussions). Clubhouse was aimed
towards larger projects with complex stories and multiple teams, and ultimately many of its
features were inappropriate for a team of our size. As development progressed, members
quickly found that keeping every story up-to-date with meetings felt more like duplication
than organisation, and ultimately it was used as a simple repository for the product backlog.
Sprint backlogs were instead managed through verbal discussions - and with our small
group size, this was already sufficient to give members a clear objective over each sprint.

To have dealt with this better, the group could have assigned an actual Scrum Master for
meetings - this would give them a responsibility of keeping the Clubhouse app up-to-date
with each meeting, and they could further use it to direct scrum discussions. Another option,
perhaps more suitable for a group of this size, would have been to choose a different tool
altogether - such as Trello for its ease of use and simpler structure, better reflecting the
nature of this project.

Another aspect that could have been improved upon was the use of continuous integration -
particularly regarding testing on the front-end of the system. While back-end tests were very
useful as ‘white box’ tests which considered the internal operation of the system, the team
took too long to develop ‘black box’ tests that could be done on the front-end, meant to test
the overall behaviour of the system itself.

This was particularly troubling when the API endpoints themselves, or their expected
behaviour were being modified, as the current back-end tests would be invalidated.
Moreover, outstanding issues from previous changes to the front-end would sometimes be
missed. If the team had spent time developing front-end tests earlier, the errors caused by
both of these issues could have been mitigated and resolved faster.

Supergroup Interaction

Supergroup interaction was fairly limited in the first semester, but this was understandable as
many of the groups had to focus on developing implementations of core features first, so that
there was meaningful data to be sent across servers. Being able to establish the general
method of communication (REST) and a structure of endpoints (particularly subforums)
before the MVP was already very helpful, as it set up a system that could be easily built
upon during the second semester. The oversights in the protocol could then be fixed by
relatively minor changes, and this kept development smooth for all groups.

Following this, supergroup interaction in the second semester provided a sort of implicit user
testing environment, and continued to support development for all groups. Often one group
would notify another if a feature of their system wasn’t working as expected. This provided
another layer of assurance that systems were working well.

However, inter-group functionality was a main issue that arose with testing, particularly near
the end of submission. Local systems generally could not test inter-server features, and as a
result it was difficult to identify the source behind an error from actions involving multiple
servers; information could have been processed or displayed incorrectly on either side.

With hindsight, it would have been good to adopt a standardised set of tests across the
supergroup earlier, so that we could automatically check our implementations against known
common requirements. This would be possible through the end to end testing provided by
Postman.

Conclusions
In conclusion we developed a system that met the outline of requirements given to us at the
beginning of the year. The supergroup designed an API that was relatively effective. The
digital signature system that we implemented was effective in verifying the entity of servers,
protecting us from attacks from malicious users pretending to be a trusted server. We also
protect ourselves from malicious users who log in to our site by implementing authorization
mechanisms on our own instance to facilitate banning users and deleting malicious content.

We adopted the agile development methodology which allowed use to rapidly develop
features and change requirements as needed. This was especially pertinent in the second
semester when the supergroup agreed minimum requirements were changing and so we
had to change priorities in order to develop these features.

The level of intergroup communication increased steadily over the course of the year and by
the end of it there was a good amount of intergroup discussion and testing.

Our system has a clean and intuitive interface which makes the site functionality clear to new
users. We have a strong separation of concerns between frontend and backend. This
assisted us to design for graceful failure so that if some of the site content is missing or
invalid then the site will still function for the most part.

There were a number of features left on the cutting room floor which could have been
implemented, including the cut pagination system and a direct messaging system that was
proposed but we didn’t have time to implement at all.

Acknowledgments
We would like to thank our supervisors Angela Miguel and Ian Gent, and our module
coordinator Edwin Brady. We would also like to thank Stuart Norcross for his assistance in
setting up our system on the school servers. Finally we thank every other group in
supergroup B for their various contributions to the project as a whole.

Appendices
Appendix 1: Example of inter-server communication header construction

To illustrate exactly how inter server certification works, we look at an example. To construct
a valid certification header, we construct a signature input string (split into several lines
below for readability).

Signed string:

*request-target: POST https://cs3099user-b7.host.cs.st-andrews.ac.uk/api/subforums/1\n
current-date: 2021-04-07T23:02:24.204Z\n
user-id: 1\n
signature-input: sig1=(*request-target, date, user-id)

We then sign this string using our private key and RSASSA-PSS-SHA512 with a salt length
of 20.

Signature

gBxyJIB1jPfo/pNKG0YDA6kry4xmHJ3fNiGF7n/XSjUAfu9FIqwN/VQ80RDk442PmMP09OKyAl36wO3uvKelo66
LRiLx5ICJWCbefiO1eVAqSPPUN2KqicaSrueJXsv9OM/CGTl+NGTqODqs7j3SF9tF6OGCZPvAOflqrtae18itcL
b5Lmi9EzWEgP4oWme/vYatxJOYwgrZRkeP4LR5u8GJ24XnPFeLhqnBqqmR73HVm55uXGj2neaB+GFoSBFXOZ6uU
bc/lnGEEiG2wobo/VU1TDOLZgf5cDpOg0kmclc3jxxI1/5idgzdzdOIVbwBZuqdz6j/X+4xI0+/Y1lnB7SiMa4M
M60xII0FKYzSk81eWla2yw8yauDLyCAhP7pl0ItuDcQmQMzg0XdyonaMOaL2Yuuck1TegkOsCKhWmZhbDJT3nvl
//pdNMF/HDOa4XFr/NaO584ukukw0BpJCVwSBDhcakfbt99FcnSaOHx9ia3OaVDwbD65byJGgLH43DK+G5nMbMJ
wRecEQxs4UeL2h5A5lJOCY/kJhgO7rcXKhsmuDYtkfUyn2Su3jPi1D4xdxwj5gDX7gzVaAOU/G5QxMZ2SaYPn+e
Kc8isxYFUGzMpC57NjpusfmuLVP/Innj2p5+Gi3abQVn26BNFIZAP/Y9ETUx/oauPubEqdacIg=

Finally we construct our headers to send with our request to another server. This must
include all the information above (except the *request-target which can be inferred from the
base HTTP request) as well as the location of our public key which the other server can use
to verify our signature. Using this information, a foreign server can reconstruct our signed
string and verify it matches the signature attached. At which point it can choose to grant us
API access if it approves of our server.

Headers attached with request to foreign server

current-date: 2021-04-07T23:02:24.204Z
user-id: -1
Signature:
sig1=:gBxyJIB1jPfo/pNKG0YDA6kry4xmHJ3fNiGF7n/XSjUAfu9FIqwN/VQ80RDk442PmMP09OKyAl36wO3uv
Kelo66LRiLx5ICJWCbefiO1eVAqSPPUN2KqicaSrueJXsv9OM/CGTl+NGTqODqs7j3SF9tF6OGCZPvAOflqrtae
18itcLb5Lmi9EzWEgP4oWme/vYatxJOYwgrZRkeP4LR5u8GJ24XnPFeLhqnBqqmR73HVm55uXGj2neaB+GFoSBF
XOZ6uUbc/lnGEEiG2wobo/VU1TDOLZgf5cDpOg0kmclc3jxxI1/5idgzdzdOIVbwBZuqdz6j/X+4xI0+/Y1lnB7
SiMa4MM60xII0FKYzSk81eWla2yw8yauDLyCAhP7pl0ItuDcQmQMzg0XdyonaMOaL2Yuuck1TegkOsCKhWmZhbD
JT3nvl//pdNMF/HDOa4XFr/NaO584ukukw0BpJCVwSBDhcakfbt99FcnSaOHx9ia3OaVDwbD65byJGgLH43DK+G
5nMbMJwRecEQxs4UeL2h5A5lJOCY/kJhgO7rcXKhsmuDYtkfUyn2Su3jPi1D4xdxwj5gDX7gzVaAOU/G5QxMZ2S
aYPn+eKc8isxYFUGzMpC57NjpusfmuLVP/Innj2p5+Gi3abQVn26BNFIZAP/Y9ETUx/oauPubEqdacIg=:
signature-input: signature-input: sig1=(*request-target, date, user-id);
keyId=https://cs3099user-b7.host.cs.st-andrews.ac.uk/api/key; alg=RSASSA-PSS-SHA512

Appendix 2: Running Postman tests

The JSON containing the Postman tests can be found in the following directories:

Tests: backend/cs3099-loopback/postman_tests/CS3099.postman_collection.json
Environment: backend/cs3099-loopback/postman_tests/CS3099_Testing.postman_environment.json

After following the system repo’s readme file to set up the system, an additional environment
variable should be added to the backend .env file:

TESTING=”TRUE”

After which the backend can be run in the usual way using:

npm run start

The system will initialise itself before running all postman tests and logging a summary to the
console before exiting.

Note: The database should be empty prior to running the system if it is being run in “testing
mode”. The system will initialise a test database when it runs in testing mode and if there is
already data present, the tests may fail due to unexpected things being in the database.

Bibliography

Mei, Sarah. “Why You Should Never Use MongoDB” 11 November 2013,
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
Accessed 14 April 2021.

Nielsen, Jakob. “10 Usability Heuristics for User Interface Design.” Nielsen Norman Group,
24 April 1994, https://www.nngroup.com/articles/ten-usability-heuristics/. Accessed 11
April 2021.

Esguerra, Richard. "An Introduction To The Federated Social Network". Electronic Frontier
Foundation, 2011,
https://www.eff.org/deeplinks/2011/03/introduction-distributed-social-network
Accessed 8 Apr 2021.

Shneiderman, Ben, et al. Designing the User Interface. 6th ed.,
Pearson, 2016.

M. Cavage, Joyent, M. Sporny, Digital Bazaar. “HTTP Signatures” February 1, 2014
,https://tools.ietf.org/id/draft-cavage-http-signatures-01.html Accessed 15/04/2021

http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.eff.org/deeplinks/2011/03/introduction-distributed-social-network
https://tools.ietf.org/id/draft-cavage-http-signatures-01.html

